Published: Nov. 3, 2006
Event Description:

Greg Lyng, Department of Mathematics, University of Wyoming

The secondary caustic in the semiclassical limit for the focusing nonlinear Schr枚dinger equation

We consider the cubic focusing nonlinear Schr枚dinger equation in one space dimension, with fixed initial data, in the semiclassical limit when a dispersion parameter analogous to Planck鈥檚 constant tends to zero. This problem is relevant in the theory of 鈥渟upercontinuum generation鈥 in which coherent white light is produced from a monochromatic source by propagation in an optical fiber with small dispersion. This is a highly unstable problem with limiting 鈥渄ynamics鈥 valid for analytic initial data being described by an initial-value problem for a nonlinear system of elliptic PDEs. Nonetheless, the assumption of analyticity of the initial data allows for detailed asymptotics to be obtained with the help of the solution of the nonlinear Schr枚dinger equation via the inverse-scattering transform. The solutions display remarkable structure consisting of regions of smoothly modulated quasiperiodic oscillations separated by asymptotically sharp 鈥渃austic鈥 curves in the space/time plane. The first 鈥減rimary鈥 caustic curve has been explained by passage to an appropriate continuum limit of a dense distribution of discrete eigenvalues of an associated linear operator. This talk will describe recent joint work with Peter Miller (University of Michigan) in which the 鈥渟econdary鈥 caustic curve is studied, and a new mechanism is found to explain it that depends essentially on the discrete nature of the spectrum and (unlike the case of the primary caustic) cannot be obtained from a naive continuum limit.

Location Information:
听听()
1111 Engineering DR聽
Boulder, CO聽
搁辞辞尘:听265
Contact Information:
Name: Ian Cunningham
Phone: 303-492-4668
贰尘补颈濒:听amassist@colorado.edu