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Abstract. In this paper we demonstrate performance of several local and multi-resolution gravity
models derived from existing spherical harmonic models. A model of this type was provided to
USAFSC in 1997, and additional variants have been developed since then. We also begin to address
the problem of estimating multi-resolution models directly from gravity measurements. We hope to
demonstrate that it is reasonable to expect gravity models with greater accuracy and flexibility once
the spherical harmonic basis has been eliminated from the process.
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1. Introduction

For a variety of applications it is necessary to have an accurate model of the Earth’s
gravitational field. Up to now such models have been constructed using bases of
spherical harmonics. However, to meet future demands there is a need to improve
both accuracy and efficiency of Earth gravity models beyond what is achievable
with the spherical harmonic basis. The use of such basis functions imposes lim-
itations because they are globally supported, making it impossible to increase the
resolution of the model without increasing the order and degree globally. We de-
scribe below a new approach to the problems of evaluating and estimating the
Earth’s gravitational field. Namely, by using bases of functions which are locally
supported, such as wavelets, we are able to avoid the limitations imposed by the
spherical harmonic basis.

We note that our approach to estimating models of Earth’s gravitational field is
equally applicable to the general problem of estimating gravity fields in the vicinity
of other celestial bodies, for example, asteroids.

Let us recall the form of the spherical harmonic model of the gravitational
potential,
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where µ is Earth’s gravitational constant, r is the length of the radius vector from
Earth’s center of mass, R is the equatorial radius of the Earth, φ is the geocentric
longitude and θ is the geocentric latitude. The spherical harmonic Yn(φ, θ) is
defined as
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n (cos θ)
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,

where {C̄0
n, C̄1

n, . . . , C̄n
n , S̄1

n, . . . , S̄n
n} are normalized coefficients, and P̄ m

n are nor-
malized associated Legendre functions of degree n and order m. As it is well
known, V is a solution for the Laplace equation in spherical coordinates (r, φ, θ),
r > R.

The cost of evaluating V at a point (r, φ, θ)
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Correlation matrices are dense because coefficients of the spherical harmonic
expansion are not associated with any particular spatial location. Indeed, each coef-
ficient in the expansion contributes to the field at every spatial location. Spherical
harmonics are globally supported, oscillatory functions, which depend on cancel-
lation (constructive interference) to achieve the approximation. Changing even a
single coefficient in the model has a global effect. It is difficult, if not impossible,
to adjust the spatial frequency content of a spherical harmonic expansion locally.
In particular, there is a difficulty in incorporating observations of the gravitational
potential near the surface with those obtained from satellites, which is due in part
to the different spectral contents of the data.

Another important consideration is that the linear system for the L2-minimiza-
tion problem for model estimation has a very large condition number. Coupled
with the global nature of spherical harmonic basis functions, this severely limits
the overall resolution attainable in the model. We are unable to take advantage of
the fact that measurements in some regions are better than in others, and the most
poorly sampled region dictates the limit on the degree of resolution that can be
attained globally.

Finally, computation of some satellite orbits appears to be very sensitive to the
number of spherical harmonic terms retained in the model, and does not follow
the common sense rule ‘more terms are better.’ It is indicative of an analogue of
Gibbs’ phenomenon since the magnitude of the normalized spherical harmonic
model coefficients does not decrease significantly before the model is truncated.
(Gibbs’ phenomenon is a type of oscillatory error caused by abrupt truncation of
a Fourier series with slowly decaying coefficients. A more detailed description is
contained in Appendix B.)

Our goal is to develop multiresolution models of the Earth’s gravity that do
not suffer from the difficulties of estimation and evaluation outlined above. Mul-
tiresolution models use basis functions with localized support in both space and
spectral domains. This allows us to generate models where changes in most of the
parameters (coefficients) will produce only local changes in the model (up to any
finite but arbitrary accuracy).
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for estimation of the model parameters. Such bases also allow us to address the
problem of ill-conditioning in an adaptive manner.

The particular choice of basis is a crucial issue since it will be necessary to use
several different algorithms in conjunction with the representation. A number of
authors (e.g. [1]) have constructed wavelet-type bases that respect the topology of
the sphere. Although there certainly is merit to such constructions, we find them
to be somewhat cumbersome for our purposes. Our preference is to use a more
direct approach, where we employ ‘general purpose’ functions such as splines,
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We introduce a grid on each square which is equispaced in the variables x and
y. However, the projection of this grid back onto the spherical surface suffers a
severe distortion due to stretching near the poles, since adjacent grid points become
closer together the nearer they are to the poles. This gives rise to the pole problem
mentioned above.

Using locally supported B-splines, we construct a representation of the geo-
potential on each shell, which interpolates the geopotential at each point of the
grid.

Let ri be a fixed distance from the center of the Earth which corresponds to
the location of one of the concentric shells. The function Si that describes the
geopotential on the shell is defined by

Si(x, y) = V (ri, φ, θ). (3)

The left-hand side has the form

Si(x, y) =
N−1∑
j=0

N−1∑
k=0

si,j,k β(Nx − j)β(Ny − k), (4)

where β denotes the central B-spline of sufficiently high order. Grid spacing on
the square is N−1, which is also the length of the largest subinterval on which
the spline is a polynomial. Function Si is an approximation of the geopotential V ,
hence the two sides of Equation (3) agree to within prescribed accuracy. Choice of
the integer N and the order of the B-splines depends upon accuracy and memory
requirements. Both are adjustable parameters in the model.

The cost of evaluating the B-spline series (4) is roughly equal to the square
of the order of the B-spline. If the order of B-splines is M, then roughly M2

multiplications are required to evaluate the right-hand side of (4). Note that this
cost is independent of the parameter N , which instead governs memory storage
requirements. It is obvious from (4) that N2 coefficients must be stored in computer
memory for each shell. To achieve the prescribed accuracy, the choice of the values
of N and M are inversely proportional. The larger N is, the smaller M is, and vice
versa. Thus, the choice of parameters is a trade-off between computational speed
and memory storage requirements.

2.1.1. Spacing between the concentric shells
Examination of Equation (1) reveals that, as r increases, the higher-order terms
in the series become insignificant. This means that, for large r, the field can be
approximated by low order polynomials and, thus, shells that represent the geopo-
tential far above the Earth need not be so closely spaced as shells near the surface.
Consequently, in our models, we increase the distance between consecutive shells
as r is increased.

We introduce the dimensionless variable z, defined by

z = 1 − R

r
. (5)
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where M is the order of the B-spline β(x), and where a(ξ) is defined by

a(ξ) =
M/2−1∑
1−M/2

β(k) eikξ .

• Apply the inverse two-dimensional FFT to the matrix {ŝn−1
i,j,k} to obtain the

coefficient matrix {sn−1
i,j,k} on the coarser scale.

We note that multiresolution decomposition can be used in conjunction with any
of the models described here, not just the doubly-periodic model.

The decomposition algorithm provides a simple and robust method for filtering
the high frequency content of the model – high and low frequency can be extracted
and represented separately. For example, Figure 1 in Appendix A illustrates how
multiresolution decomposition is used to represent the low frequency portion of the
field.

Such decomposition can be useful for the purpose of localizing the high fre-
quency contribution of the gravity field. The need for such decomposition is appar-
ent, see for example [2] or [3]. In [3] a deterministic modification of Stokes kernel
is constructed for this purpose, with the goal of applying the results to computation
of a gravimetric geoid. We feel that the models presented here, especially when
coupled with the decomposition algorithm, might be useful in addressing such
problems.

2.2. MULTIWAVELET CUBE MODEL

In this model, the surface of the sphere is mapped to the surface of a cube. Thus,
the concentric shells form a sequence of nested cubes. A point on the surface of a
sphere is mapped to a point on the reference cube (which has faces perpendicular
to the coordinate axes and at a distance of one unit from the origin) using the
following simple algorithm:

• Input coordinates (r, φ, θ) on the spherical surface of radius r.
• Compute (x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ).
• Find d = max{|x|, |y|, |z|}.
• Coordinates on the reference cube are (ξ, η, ζ ) = (x/d, y/d, z/d).

Geometrically, we can think of a ray that emanates from the origin and intersects
the sphere and the reference cube each in a single point. These two points are then
mapped one to the other. (Mappings between cubic and spherical surfaces have
been considered by other authors as well, see e.g. [4].)



MULTIRESOLUTION ESTIMATION AND REPRESENTATION OF GRAVITY FIELDS 95

The rectangular grid partitions each face of the cube into a number of square
subdivisions, and we build a wavelet representation of the geopotential on each
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TABLE I

Subdivision of the spherical surface to obtain six panels

Panel Angle ranges x-coordinate y-coordinate

1 −π � φ < −π/2, −π/4 � θ � π/4 α φ + 3 α θ

2 −π/2 � φ < 0, −π/4 � θ � π/4 α φ + 1 α θ

3 0 � φ < π/2, −π/4 � θ � π/4 α φ − 1 α θ

4 π/2 � φ < π, −π/4 � θ � π/4 α φ − 3 α θ

5 |γ | � 1, |ω| � 1, θ > 0 α tan−1 (ω) ± 2 −α sin−1 (γ )

6 |γ | � 1, |ω| � 1, θ < 0 α tan−1 (ω) ± 2 −α sin−1 (γ )

ordinates (φ, θ) for each panel appear in the second column. Canonical coordinates
on the face of each panel are (x, y), where −1 � x, y � 1, and these are obtained
as indicated in columns 3 and 4 of the table with α = 4/π . Panels designated 5 and
6 contain the north and south poles, respectively, and we define ω = tan θ/ cos φ

and γ = cos θ sin φ in rows 5 and 6 of the table. For the x-coordinate in rows 5
and 6, we use the minus sign if ω > 0 and the plus sign if ω < 0.

We note that the B-spline expansion for each panel overlaps its immediate
neighbors. Thus, to use this model for the estimation problem, we would need
to add a certain number of equations to ensure that the representation near the
boundaries of each panel is consistent with that of its neighbors.

2.3.2.
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TABLE II

Size of local models

Order of model Size in Mbytes

18 10.29

41 27.86

70 70.28

TABLE III

Comparison of evaluation times

Order of Time for Time for Speed-up Largest

model sph. harm local model factor l2 error

18 3.2745 0.8988 3.6430 0.12e-12

41 16.427 0.8410 19.532 0.16e-11

70 47.547 0.8471 56.130 0.13e-10

substantially more memory than spherical harmonic models. However, modern
computers have sufficient RAM to handle the increased size easily.

Tests for timing and accuracy reported in Table III were done by comparing
performance of the local model directly to the WGS84 spherical harmonic model
[7]. The test consists of computing gravity vectors for 10,000 randomly generated
points, then comparing execution times and accuracy. Accuracy is measured by
computing the l2-norm of the difference between the gravity vectors produced by
the two different models, and reporting the largest error. Execution times are in
seconds, and the speed-up factor is obtained by dividing the execution time for the
spherical harmonic model by the execution time for the local model.

Observe that, while evaluation time for the spherical harmonic model increases
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L2-norm. In practice, the problem of finding u is often replaced by the problem of
finding the corrections for u.

The actual estimation problem is more complicated since the input data often
consists of measurements made from satellites, which contain errors due to various
sources and, thus, at best can only be expected to be close to values of the actual
geopotential. This situation brings in additional complications which we would
like to ignore for now and, therefore, we confine our discussion to the problem of
harmonic interpolation in order to illustrate several important points.

A traditional approach for solving the problem is to represent u with spherical
harmonics and estimate the coefficients. We could thus make use of expression
(1), which contains spherical harmonics up through degree and order N . This
representation obviously solves the Laplace equation, and the problem is one of
computing the coefficients to solve the interpolation problem (7). Difficulties occur
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The definitions of t
n,p

k,l , β
j,p

k,l and γ
j,p

k,l are similar, and are obtained by substituting
(9) into (8) and comparing the result to (10).

Collecting all such equations, for p
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Appendix A. Illustration of the Multiresolution Decomposition

In Figure 1 we illustrate the multiresolution decomposition of the geopotential (see
§2.1.4) within the B-spline model. The underlying spherical harmonic model is
EGM96 (360 × 360 order and degree model). The plot in the upper left corner is a
high resolution display of a selected region of Earth’s geopotential. This particular
region was chosen because of the wide bandwidth of its features. Going from left
to right and top to bottom, the sequence shows the successive coarsening using the
multiresolution decomposition.

Appendix B. An Analogue of Gibbs’ Phenomenon Due to Abrupt Truncation
of the Spherical Harmonic Expansion

Let us present a comparison that illuminates diffculties inherent in current spherical
harmonic models. We consider the difference between two models, WGS84-41 and
WGS84-70 [7]. As the coefficients of WGS84-41 are identical with the coefficients
of WGS84-70 up through order 41, we can view WGS84-41 as a truncated spher-
ical harmonic expansion of the full WGS84-70 model. In the same way, WGS84-70
can be viewed as a truncation of even higher order models.

To illustrate our comparison, we plot the function V for both models WGS84-
70 and WGS84-41 on the surface of the Earth aroud its equator, taking r = R, θ =
π/2, and 0 � φ � 2π in (1). This particular choice provides a good representative
of the typical behavior.

Figure 2 shows the SGS84-70 model together with the WGS84-41 model and
the difference between them. The relative difference is plotted in Figure 3.

The question that one might ask is what part of this difference is due to the ana-
logue of Gibbs’ phenomenon. (Gibbs’ phenomenon is an oscillatory error which
occurs if a Fourier series with slowly decaying coefficients is truncated abruptly.
Here we refer to the abrupt truncation of the spherical harmonic expansion.) The
difference between the two graphs is most likely due to the abrupt truncation.
Spherical harmonics, being global, oscillatory functions, depend on cancellation
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Figure 1. Multiresolution decomposition of a selected region using the B-spline representation of the
spherical harmonic geopotential model EGM96.
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Figure 4. Relative difference between WGS84-70 and LWGS84-70R. Note that the difference is at
most about 0.3%.

(destructive interference) to achieve the approximation. If high frequencies are re-
moved by truncation then Gibbs’ phenomenon occurs (in full analogy with Fourier
series).

Now let us consider the B-spline approximation of the surface potential V (r =
R in (1)), obtained by interpolating V on an equispaced, two-dimensional grid. The
size of the grid is roughly 4N ×4N , where N is the order and degree of the model,
which is sufficient for a highly accurate representation of the potential function V

(or its derivatives). For example, we use a 160 × 160 grid to represent the WGS84-
41 model with accuracy ≈ 10−11 and represent the WGS84-70 model with the same
accuracy on a 280 × 280 grid. Let us refer to the former B-spline representation as
LWGS84-41 (local WGS84-41) and to the latter as LWGS84-70 (local WGS84-
70). Model LWGS84-70 is, for practical purposes, indistinguishable from model
WGS84-70, and LWGS84-41 is likewise indistinguishable from WGS84-41.

Performing one step of multiresolution decomposition (see §2.1.4) on the
representation LWGS84-70, we obtain the reduced model, which we refer to as
LWGS84-70R. This reduced model is supported on a 140 × 140 grid and thus
is somewhat smaller in size than the LWGS84-41 model. The relative difference
between LWGS84-70R and WGS84-70 is shown in Figure 4.

Note that the relative difference in Figure 4 is roughly 20 times smaller than that
in Figure 3. This indicates a low information content of roughly half of the spher-
ical harmonic coefficients in WGS84-70 model, corresponding to the high spatial
frequencies. The B-spline model LWGS84-70R preserves the essential features of
WGS84-70 much more faithfully than does WGS84-41, and yet it is practically
devoid of high frequency content, and is essentially equivalent to WGS84-41 in
its resolution. The difference is that LWGS84-70R was not obtained by an abrupt
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truncation, but rather by a smoothing process which, unlike truncation, avoids the
introduction of strong oscillatory artifacts (Gibbs’ phenomenon).

In summary, we have seen that there exist significant differences between


