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I Introduction

The wavelet bases provide a system of coordinates in which wide classes of linear op-
erators are sparse. As a result, the cost of evaluating Calderón-Zygmund or pseudo-
differential operators on a function is proportional to the number of significant wavelet
coefficients of this function, i.e., the number of wavelet coefficients above a given thresh-
old of accuracy. Consequently, fast algorithms are now available for solving integral
equations with operators from these classes [3].

In order to use the wavelet bases for solving partial differential equations, one
is led to consider differential operators and operators of multiplication by a function.
Numerical issues of representing differential operators has been addressed



In this paper we address the problem of pointwise multiplication of functions in
the wavelet bases. We will consider computing F (u) = u2 in the wavelet bases since the
product of two functions may be written as uv = 1

4
[(u+ v)2 − (u− v)2].

It appears that the straightforward algorithm which would require computing the
expansion of the products of the basis functions, storing and using them to perform the
multiplication is inefficient. Such algorithm requires computing the coefficients

c
j;j′;m
k;k′;l =

∫

+∞

−∞

 
j
k(x) 

j′

k′(x) m
l (x) dx;

where  j
k(x) = 2−j=2 (2−jx − k) are the basis functions. While computing c

j;j′;m
k;k′;l does

not present a problem, the number of the nonzero of coefficients is large and, what is
more important, the number of operations to compute u2 is proportional to N 3

s , where
Ns is the number of significant coefficients in the representation of u.

In a number of applications the functions of interest are the functions that are
singular or oscillatory at a few locations. The number of significant wavelet



II Multiresolution algorithm for evaluating u2

II.1 Uncoupling the interaction between scales

Let us consider the projections of u ∈ L2(R) on subspaces Vj,

uj = Pju; uj ∈ Vj; (2.1)

where {Vj}j∈Z,is a multiresolution analysis of L2(R) . In order to uncouple the interac-
tion between scales, we write a “telescopic” series,

u2

0 − u2

n =
j=n
∑

j=1

[

(Pj−1u)
2 − (Pju)

2
]

=
j=n
∑

j=1

(Pj−1u+ Pju)(Pj−1u− Pju) (2.2)

Using Pj−1 = Pj +Qj, we obtain

u2

0 − u2

n =
j=n
∑

j=1

(2Pju+Qju)(Qju); (2.3)

or

u2

0 = 2
j=n
∑

j=1

(Pju)(Qju) +



II.2 Computing u2 in the Haar basis

Let us start by considering an



scale j = 1, we compute the differences and averages d̄j+1

k and s̄
j+1

k . We then add s̄
j+1

k

to ŝj+1

k before expanding it further according to the following pyramid scheme

{ŝ1
k} −→ {s̄2

k} −→ {s̄2
k} + {ŝ2

k} −→ {s̄3
k} −→ {s̄3

k} + {ŝ3
k} · · ·

↘ ↘ ↘

{d̄2
k} −→ {d̄2

k} + {d̂2
k} {d̄3

k} −→ {d̄3
k} + {d̂3

k} · · ·

(2.13)

(The formulas for evaluating the differences and averages d̄j+1

k and s̄j+1

k may be found in
[3]). As a result, we compute d̄j

k, j = 2; : : : ; n, (we set d̄1
k = 0) and s̄n

k and obtain

u2

0(x) =
j=n
∑

j=1

∑

k∈Z

(d̂j
k + d̄

j
k) h

j
k(x) +

∑

k∈Z

(s̄n
k + ŝn

k + ˆ̂s
n

k)�n
k(x): (2.14)

It is clear, that the number of operations for computing the Haar expansion of u2
0

is proportional to the number of significant coefficients dj
k in the wavelet expansion of u0.

In the worst case, if the original function is represented by a vector of the length N , then
the number of operations is proportional to N . If the original function is represented
by O(log2N) significant Haar coefficients, then the number of operations to compute its
square is proportional to log2N . The algorithm in the Haar basis easily generalizes to
the multidimensional case.

II.3 Computing u2 in the wavelet bases

We now return to the general case of wavelets and derive an algorithm to expand (2.4)
into the wavelet bases. Unlike in the case of the Haar basis, the product on a given
scale ”spills over” into the finer scales and we develop an efficient approach to handle
this problem. We use compactly supported wavelets though our considerations are not
restricted to such wavelets. We denote the scaling function by � and the wavelet by  .
The wavelet basis is then given by  

j
k(x) = 2−j=2 (2−jx − k), k; j ∈ Z (see [8]). We

consider the multiresolution analysis associated with such basis.
In order to expand each term in (2.4) into the wavelet basis we are led to consider

the integrals of the products of the basis functions, for example

M
j;j′

WWW (k; k′; l) =
∫

+∞

−∞

 
j
k(x) 

j
k′(x) 

j′

l (x) dx; (2.15)

where j ′ ≤ j. It is clear, that the coefficients M j;j′

WWW (k; k′; l) are identically zero for
|k − k′| > k0, where k0 depends on the overlap of the supports of the basis functions.
The number of necessary coefficients may be reduced further by observing that

M
j;j′

WWW (k; k′; l) = 2−j′=2

∫

+∞

−∞

 
j−j′

0 (x) j−j′

k−k′(x) 0

2j−j′k−l(x) dx; (2.16)
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so that
M

j;j′

WWW (k; k′; l) = 2−j′=2M̃
j−j′

WWW (k − k′; 2j−j′k − l): (2.17)

We also observe that the coefficients in (2.17) decay as the distance r = j − j ′

between the scales increases. Rewriting (2.17) as

M̃ r
WWW (k − k′; 2rk − l) = 2−r

∫

+∞

−∞

 (2−rx) (2−rx− k + k′) (x− 2rk + l) dx; (2.18)

and recalling that the regularity of the product  (2−rx) (2−rx−k+k′) increases linearly
with the number of vanishing moments of the function  , we obtain

|M̃ r
WWW (k − k′; 2rk − l)| ≤ C2−r�M (2.19)

with some � (see [8], [9]).
Let us define j0 as the distance between the scales such that for a given � all the

coefficients in (2.19) with labels r = j − j ′, r > j0, have absolute values less than �. For
the purpose of computing with accuracy �, we replace the mappings in (2.5) and (2.6)
by

M
j
V W : Vj × Wj → Vj

⊕

j0≤j′≤j

Wj′; (2.20)

and
M

j
WW : Wj × Wj → Vj

⊕

j0≤j′≤j

Wj′: (2.21)

Since
Vj

⊕

j0≤j′≤j

Wj′ = Vj0−1; (2.22)

and
Vj ⊂ Vj0−1; Wj ⊂ Vj0−1; (2.23)

we may consider the bilinear mappings (2.20) and (2.21) on Vj0−1 × Vj0−1. For the
evaluation of (2.20) and (2.21) as mappings

Vj0−1 × Vj0−1 → Vj0−1; (2.24)

we need significantly fewer coefficients than for the mappings (2.20) and (2.21). Indeed,
it is sufficient to consider only the coefficients

M(k; k′; l) = 2−j=2

∫

+∞

−∞

�(x− k)�(x− k′)�(x− l) dx; (2.25)

and it easy to see that M(k; k′; l) = 2−j=2M0(k − l; k′ − l), where

M0(p; q) =
∫

+∞

−∞

�(x− p)�(x− q)�(x) dx: (2.26)
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Though it is a simple matter to derive and solve a system of linear equations to find
M0(p; q), we advocate a different approach to evaluate (2.24) in the next subsection.

Let us now explain the reasons for considering (2.20) and (2.21) as mappings
(2.24). On a given scale j the procedure of ”lifting” the projections Pju, Qju into a
”finer” subspace is accomplished by the pyramid reconstruction algorithm (see e.g. [3]).
Let us assume that only a small number of the coefficients of Qju are above the threshold
of accuracy. We note (see Remark 2 for the Haar basis) that only those coefficients of
Pju that contribute to the product (Pju)(Qju) (above the threshold �) need to be kept.
In fact, one may consider the function Q



Instead of (2.24), it is sufficient to consider the mapping

V0 × V0 → V0: (2.27)

It is easy to see that for f ∈ V0,

f(x) =
∑

k

fk�(x− k); (2.28)

the values of f at integer points may be wri-a9.35955 0 Td95 0 Td
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