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I Introduction

These lectures are devoted to fast numerical algorithms and their relation to a number of
important results of Harmonic Analysis. The representation of wide classes of operators
in wavelet bases, for example, Calderón-Zygmund or pseudo-differential operators, may
be viewed as a method for their “compression”, i.e., conversion to a sparse form. The
sparsity of these representations is a consequence of the localization of wavelets in both,
space and wave number domains. In addition, the multiresolution structure of the wavelet
expansions brings about an efficient organization of transformations on a given scale and
interactions between different neighbouring scales. Such an organization of both linear
and non-linear transformations has been a powerful tool in Harmonic Analysis (usually
referred to as Littlewood-Paley and Calderón-Zygmund theories, see e.g. [33]) and now
appears to be an equally powerful tool in Numerical Analysis.

In applications, for example in image processing [12] and in seismics [22], the mul-
tiresolution methods were developed in a search for a substitute for the signal processing
algorithms based on the Fourier transform. A technique of subband coding with the ex-
act quadrature mirror filters (QMF) was introduced in [37]. It is clear that the stumbling
block on the road to both, the simpler analysis and the fast algorithms, was a limited
variety of the orthonormal bases of functional spaces. In fact, there were (with some
qualifications) only two major choices, the Fourier basis and the Haar basis. These two
bases are almost the antipodes in terms of their space–wave number (or time-frequency)
localization. Therefore, it is a remarkable discovery that besides the Fourier and Haar
bases, there is an infinite number of various orthonormal bases with a controllable lo-
calization in the space–wave number domain. The efforts in mathematics and various
applied fields culminated in the development of orthonormal bases of wavelets [39], [30],
and the notion of Multiresolution Analysis [31], [27]. There are many new constructions
of orthonormal bases with a controllable localization in the space–wave number domain,
notably [19], [16], [18], [17].

In Numerical Analysis many ingredients of Calderón-Zygmund theory were used
in the Fast Multipole algorithm for computing potential interactions [35], [24], [13]. The
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Fast Multipole algorithm requires order N operation to compute all the sums
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These methods may be viewed as devices for reducing a partial differential equation to a
sparse linear system for the cost of an inherently high condition number of the resulting
matrices. If instead of finite difference or finite element representations, we use the rep-
resentation of the derivatives in wavelet bases, then a simple modification



II Preliminary Remarks

II.1 Multiresolution analysis.

We start with the definition of the multiresolution analysis. This notion, introduced
by Meyer [31], and Mallat [27], captures the essential



If there is a finite number of scales, then without loss of generality, we set j = 0
to be the finest scale. Instead of (2.4), we then have

Vn ⊂ : : : ⊂ V2 ⊂ V1 ⊂ V0; V0 ⊂ L2(Rd): (2.6)

In numerical realizations the subspace V0 is finite dimensional.

II.2 The Haar basis

For a long time the only example of the multiresolution analysis satisfying Definition II.1
with Condition 4’ was the Haar basis [25]. Computing in the Haar basis offers a glimpse
of the algorithms that we will describe in these lectures and provides a useful prototype
for numerical experimentation. If d = 1, then the Haar basis hj;k(x) = 2−j=2h(2−jx− k)
j; k ∈ Z, is formed by the dilation and translation of a single function

h(x) =

8

>

<

>

:

1 for 0 < x < 1=2
−1 for 1=2 ≤ x < 1
0 elsewhere:

(2.7)

In this case ’(x) = �(x), where �(x) is the characteristic function of the interval (0; 1).
For each j, �j;k(x) = 2−j=2�(2−jx − k), k ∈ Z, is the basis of Vj and hj;k(x) =
2−j=2h(2−jx− k), k ∈ Z, is the basis of Wj.

The decomposition of a function into the Haar basis is an order N procedure.
Given N = 2n “samples” of a function, which may for simplicity be thought of as values
of scaled averages of f on intervals of length 2−n,

s0
k = 2n=2

Z 2−n(k+1)

2−nk
f(x)dx; (2.8)

we obtain the Haar coefficients

dj+1
k =

1√
2
(sj

2k−1 − sj
2k) (2.9)

and averages

sj+1
k =

1√
2
(sj

2k−1 + sj
2k) (2.10)

for j = 0; : : : ; n− 1 and k = 0; : : : ; 2n−j−1 − 1. It is easy to see that evaluating the whole
set of coefficients dj

k, s
j
k in (2.9), (2.10) requires 2(N−1) additions and 2N multiplications.
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to the standard form. The second basis is defined by the set of three kinds of basis
functions supported on squares: hj;k(x)hj;k′(y), hj;k(x)�j;k′(y), and �j;k(x)hj;k′(y), where
�(x) is the characteristic function of the interval (0; 1) and �j;k(x) = 2−j=2�(2−jx − k).
Representing an operator in this basis leads to the non-standard form (the terminology
will become clear later).

By considering an integral operator

T (f)(x) =
Z

K(x; y)f(y)dy; (2.11)

and expanding its kernel in a two-dimensional Haar basis, we find that for Calderón-
Zygmund and pseudo-differential operators the decay of entries as a function of the
distance from the diagonal is faster in these representations than that in the original
kernel. These classes of operators are given by integral or distributional kernels that
are smooth away from the diagonal. For example, kernels K(x; y) of Calderón-Zygmund
operators satisfy the estimates

|K(x; y)| ≤ 1

|x− y| ;

|@M
x K(x; y)| + |@M

y K(x; y)| ≤ CM

|x− y|1+M
; (2.12)

for some M ≥ 1. Let M = 1 in (2.12) and consider

�j
kk′ =

Z Z

K(x; y) hj;k(x)�j;k′(y) dxdy; (2.13)

where we assume that the distance between |k − k′| ≥ 1. Since

Z

hj;k(x) dx = 0; (2.14)

we have (2.12)
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reason the gain in the decay is insufficient to make computing in the Haar basis practical.
To have a faster decay, it is necessary to use basis functions with several vanishing
moments. The vanishing moments are responsible for attaining practical algorithms, i.e.
controlling the constants in the complexity estimates of the fast algorithms.

II.3 Orthonormal bases of compactly supported wavelets

The question of the existence of a multiresolution analysis with a smooth function ’ of
Condition 4’ was not resolved until the construction of the orthonormal wavelet bases
generalizing the Haar functions by Stromberg [39] and Meyer [30] 2. We will consider
only compactly supported wavelets with vanishing moments constructed by I. Daubechies
[19], following the work of Y. Meyer [32] and S. Mallat [28], though most of the results
will remain valid for other choices of wavelet bases as well. We will further restrict our
choice of wavelet bases by only considering, for dimensions d ≥ 2, the bases constructed
from those for d = 1.

Let us consider the multiresolution analysis for L2(R76seral��

2
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Second, the orthogonality of {’(x− k)}k∈Z implies that

�k0 =
Z +∞

−∞
’(x− k)’(x) dx =

Z +∞

−∞
|’̂(�)|2 e−ik� d�; (2.21)

and therefore,
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Z 2�
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X
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|’̂(� + 2�l)|2 e−ik� d�; (2.22)

and
X

l∈Z

|’̂(� + 2�l)|2 = 1: (2.23)

Using (2.18), we obtain

X
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where sj
k and dj

k may be viewed as periodic sequences with the period 2n−j. Computing
via (2.37) and (2.38) is illustrated by the pyramid scheme

{s0
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k} −→ {s2
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k} · · ·
↘ ↘ ↘
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k} {dg � ! f



We then define f 3
m = f 2

m − am · f 2
0 , where am is chosen so that 〈f 3

m; x
M〉 = 0 for

m = 2; : : : ;M , achieving the desired orthogonality to xM . Similarly, we continue to,



where VM
j is given in (2.45), and the space WM;2

j as the orthogonal complement of VM;2
j

in VM;2
j−1 ,

VM;2
j−1 = VM;2

j

M

WM;2
j : (2.50)

The space WM;2
0 is spanned by the orthonormal basis

{ui(x)hl(y); hi(x)ul(y); hi(x)hl(y) : i; l = 1; : : : ;M}; (2.51)

where {um}m=M
m=1 is an orthonormal basis for VM

0 . Each element among these 3M 2 basis
elements has vanishing moments, i.e., it is orthogonal to the polynomials xiyl, i; l =
0; 1; : : : ;M − 1.

The space WM;2
j is spanned by dilations and translations of the basis functions of

WM;2
0 and the basis of L2([0; 1]2) consists of these functions and the low-order polynomials

xiyl, i; l = 0; 1; : : : ;M − 1.
We note that the two-dimensional multi-wavelet bases require 3M 2 different com-

binations of one-dimensional basis functions, where M is the number of vanishing mo-
ments. On the other hand, the two-dimensional bases, obtained by using compactly
supported wavelets [19], require only three such combinations which simplifies the con-
struction of the non-standard form (see Section III).

II.5 A remark on computing in the wavelet bases

Finally, we note that once the filter H has been chosen, it completely determines the
functions ’ and  and therefore, the multiresolution analysis. It is an interesting observa-
tion, that in properly constructed algorithms, the functions ’ and  are never computed.
Due to the recursive definition of the wavelet bases, all the manipulations are performed
with the quadrature mirror filters H and G, even if they involve quantaties associated
with ’ and  . As an example, let us compute the moments of the scaling function �.

The expressions for the moments,

Mm
∞ =

Z

xm ’(x) dx; m = 0; : : : ;M − 1; (2.52)

in terms of the filter coefficients {hk}k=L
k=1 , may be found using a formula for ’̂ ,

’̂(�) = (2�)−1=2
∞
Y

j=1

m0(2
−j�); (2.53)

where

m0(�) = 2−1=2
k=L−1
X

k=0

hke
ik�: (2.54)
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The moments Mm
∞ are obtained numerically (within the desired accuracy) by

recursively generating a sequence of vectors, {Mm
r }m=M−1

m=0 for r = 1; 2; : : : ;

Mm
r+1 =

j=m
X

j=0

 

m
j

!

2−jrMm−j
r Mj

1; (2.55)

starting with

Mm
1 = 2−m− 1

2

k=L−1
X

k=0

hkk
m; m = 0; : : : ;M − 1: (2.56)

Each vector {Mm
r }m=M−1

m=0 represents M moments of the product in (2.53) with r terms,
and this iteration converges rapidly. Notice, that we never computed the function ’
itself.

13



III The non-standard and standard forms

III.1 The Non-Standard Form

Let T be an operator
T : L2(R) → L2(R); (3.1)

with the kernel K(x; y). Defining projection operators on the subspace Vj, j ∈ Z,

Pj : L2(R) → Vj; (3.2)

as
(Pjf) (x) =

X

k

〈f; ’j;k〉’j;k(x); (3.3)

and expanding T in a “telescopic” series, we obtain

T =
X

j∈Z

(QjTQj +QjTPj + PjTQj); (3.4)

where
Qj = Pj−1 − Pj (3.5)

is the projection operator on the subspace Wj. If there is the coarsest scale n, then
instead of (3.4) we have

T =
n
X

j=−∞

(QjTQj +QjTPj + PjTQj) + PnTPn; (3.6)

and if the scale j = 0 is the finest scale, then

T0 =
n
X

j=1

(QjTQj +QjTPj + PjTQj) + PnTPn; (3.7)

where T ∼ T0 = P0TP0 is a discretization of the operator T on the finest scale. Expan-
sions (3.4), (3.6) and (3.7) decompose the operator T into a sum of contributions from
different scales.

The non-standard form is a representation (see [7]) of the operator T as a chain
of triplets

T = {Aj; Bj;Γj}j∈Z (3.8)

acting on the subspaces Vj and Wj,

Aj : Wj → Wj; (3.9)

Bj : Vj → Wj; (3.10)

14



Γj : Wj → Vj; (3.11)

where the operators {Aj; Bj;Γj}j∈Z are defined as Aj = QjTQj, Bj = QjTPj and
Γj = PjTQj.

The operators {Aj; Bj;Γj}j∈Z admit a recursive definition via the relation

Tj =

 

Aj+1 Bj+1

Γj+1 Tj+1

!

; (3.12)

where operators Tj = PjTPj,
Tj : Vj → Vj; (3.13)

and the operator represented by the 2 × 2 matrix in (3.12) is a mapping

 

Aj+1 Bj+1

Γj+1 Tj+1

!

: Wj+1 ⊕ Vj+1 → Wj+1 ⊕ Vj+1 (3.14)

.
If there is a coarsest scale n, then

T = {{Aj; Bj;Γj}j∈Z:j≤n; Tn}; (3.15)

where Tn = PnTPn. If the number of scales is finite, then j = 1; 2; : : : ; n in (3.15) and
the operators are organized as blocks of the matrix (see Figures 1 and 2).

Let us make the following observations:

1. The operator Aj describes the interaction on the scale j only, since the subspace
Wj in (3.9) is an element of the direct sum in (2.3).

2. The operators Bj, Γj in (3.10) and (3.11) describe the interaction between the scale
j and all coarser scales. Indeed, the subspace Vj contains all the subspaces Vj′

with j ′ > j (see (2.1)).

3. The operator Tj is an “averaged” version of the operator Tj−1.

The operators Aj, Bj and Γj are represented by the matrices �j, �j and j,

�j
k;k′ =

Z Z

K(x; y) j;k(x) j;k′(y) dxdy; (3.16)

�j
k;k′ =

Z Z

K(x; y) j;k(x)’j;k′(y) dxdy; (3.17)

and
j

k;k′ =
Z Z

K(x; y)’j;k(x) j;k′(y) dxdy: (3.18)

15



=

d̂1

ŝ 1

d
^2

ŝ 2

d
^ 3

ŝ 3

1Α



Figure 2: An example of a matrix in the non-standard form (see Example 1)
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The operator Tj is represented by the matrix sj,

sj
k;k′ =

Z Z

K(x; y)’j;k(x)’j;k′(y) dxdy: (3.19)

Given a set of coefficients s0
k;k′ with k; k′ = 0; 1; : : : ; N − 1, a repeated application of the

formulas (2.37), (2.38) produces

�j
i;l =

L−1
X

k;m=0

gkgms
j−1
k+2i+1;m+2l+1; (3.20)=



III.2 The Standard Form

The standard form is obtained by representing

Vj =
M

j′>j

Wj′; (3.25)

and considering for each scale j the operators {Bj′

j ;Γ
j′

j }j′>j,

Bj′

j : Wj′ → Wj; (3.26)

Γj′

j : Wj → Wj′: (3.27)

If there is the coarsest scale n, then instead of (3.25), we have

Vj = Vn

j′=n
M

j′=j+1

Wj′: (3.28)

In this case, the operators {Bj′

j ;Γ
j′

j } for j ′ = j + 1; : : : ; n are the same as in (3.26) and
(3.27) and, in addition, for each scale j, there are operators {Bn+1

j } and {Γn+1
j },

Bn+1
j : Vn → Wj; (3.29)

Γn+1
j : Wj → Vn: (3.30)

(In this notation, Γn+1
n = Γn and Bn+1

n = Bn). If the number of scales is finite and V0 is
finite dimensional, then the standard form is a representation of T0 = P0TP0 as

T0 = {Aj; {Bj′

j }j′=n
j′=j+1; {Γj′

j }j′=n
j′=j+1; B

n+1
j ;Γn+1

j ; Tn}j=1;:::;n: (3.31)

The operators (3.31) are organized as blocks of the matrix (see Figure 3 and Figure 4).
If the operator T is a Calderón-Zygmund or a pseudo- asorjor; eratortheathe8038 0 TdR36 7.97011 Tf
9.4906536 Td
(the8038 0 Tyexcept)Tj
149552 Tf
16.44 30 T0j
4m085 5(3.31)



=

d1

d2

d



IV The compression of operators

The compression of operators or, in other words, the construction of their sparse repre-
sentations in orthonormal bases, directly affects the speed of computational algorithms.
While the compression of data (of images, for example) achieved by methods other than
finding a sparse representation in some basis may be adequate for some applications, the
compression of operators calls for a representation in a basis in order to effectively com-
pute in the sparse form. The standard and non-standard forms of operators in the wavelet
bases may be viewed as compression schemes for a wide class of and non-standard forms of operators in the



the matrices �j, �j, j (3.16) - (3.18) of the non-standard form satisfy the estimate

|�j
i;l| + |�j

i;l| + |j
i;l| ≤

CM

1 + |i− l|M+1
; (4.7)

for all |i− l| ≥ 2M .

Similar considerations apply in the case of pseudo-differential operators. Let T
be a pseudo-differential operator with symbol �(x; �) defined by the formula

T (f)(x) =
Z

eix� �(x; �)f̂(�) d� =
Z

K(x; y)f(y) dy; (4.8)

where K is the distributional kernel of T .

Proposition IV.2 If the wavelet basis has M vanishing moments, then for any pseudo-
di�erential operator with symbol � of T and �∗ of T ∗ satisfying the standard conditions

|@�
� @�

x �(x; �)| ≤ C�;�(1 + |�|)�−�+� (4.9)

|@�
� @�

x �∗(x; �)| ≤ C�;�(1 + |�|)�−�+�; (4.10)

the matrices �j, �j, j (3.16) - (3.18) of the non-standard form satisfy the estimate

|�j
i;l| + |�j

i;l| + |j
i;l| ≤

2� j CM

(1 + |i− l|)M+1
; (4.11)

for all integer i, l.

If we approximate the operator TN
0 by the operator TN;B

0 obtained from TN
0 by

setting to zero all coefficients of matrices �j
i;l, �

j
i;l, and j

i;l outside of bands of width
B ≥ 2M around their diagonals, then it is easy to see that

||TN;B
0 − TN

0 || ≤ C

BM
log2N; (4.12)

where C is a constant determined by the kernel K. In most numerical applications, the
accuracy � of calculations is fixed, and the parameters of the algorithm (in our case,
the band width B and order M) have to be chosen in such a manner that the desired
precision of calculations is achieved. If M is fixed, then B has to be such that

||TN;B
0 − TN

0 || ≤ C

BM
log2N ≤ �; (4.13)
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(y) = T ∗(1)(y) (4.25)

It is a remarkable fact that by analysing the functions (4.24) and (4.25) (and, therefore,
the operators L� and L∗

), it is possible to decide if a Calderón-Zygmund operator is
bounded.

Theorem IV.1 (G. David, J.L. Journ�e) Suppose that the operator (3.1) satis�es the
conditions (4.5), (4.6), and (4.16). Then a necessary and su�cient condition for T to
be bounded on L2 is that �(x) in (4.24) and (y) in (4.25) belong to dyadic B:M:O:, i.e.
satisfy condition

sup
J

1

|J |
Z

J
|�(x) −mJ(�)| 2dx ≤ C; (4.26)

where J is a dyadic interval and

mJ(�) =
1

|J |
Z

J
�(x)dx: (4.27)

Splitting the operator T into the sum of three terms (4.18) and estimating them
separately leads to the estimate (4.15). We note that the functions T (1) and T ∗(1) are
easily computed in the process of constructing the non-standard form and and may be
used to provide a useful estimate of the norm of the operator.
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where an are the autocorrelation coefficients of the filter H = {hk}k=L−1
k=0 ,

an = 2
L−1−n
X

i=0

hi hi+n; n = 1; : : : ; L− 1: (5.19)

It is easy to see that the autocorrelation coefficients an with even indices are zero,

a2k = 0; k = 1; : : : ; L=2 − 1: (5.20)

This may be verifyed by using (2.20) to compute |m0(�)|2 and |m0(� + �)|2,

|m0(�)|2 = 1
2

+ 1
2

L−1
X

n=1

an cosn�; (5.21)

|m0(� + �)|2 = 1
2
− 1

2

L=2
X

k=1

a2k−1 cos(2k − 1)� + 1
2

L=2−1
X

k=1

a2k cos 2k�; (5.22)

where an are given in (5.19). Combining (5.21) and (5.22) to satisfy (2.26), we obtain

L=2−1
X

k=1

a2k cos 2k� = 0; (5.23)

and hence, (5.20) and (5.18).
The even moments of the coefficients a2k−1 from (5.19) vanish, namely

k=L=2
X

k=1

a2k−1(2k − 1)2m = 0 for 1 ≤ m ≤M − 1; (5.24)

since
��

1

i
@�

�m

|m0(�)|2
�

�=0
= 0; for 1 ≤ m ≤ 2M − 1; (5.25)

which follows from the explicit�folloComsi2d
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Substituting l = k −m, we rewrite (5.27) as

ri = 2
L−1
X

k=0

k−L+1
X

m=k

hk hk−m r2i+m: (5.28)

Changing the order of summation in (5.28) and using the fact that
PL−1

k=0 h
2
k = 1, we

arrive at

rl = 2r2l +
L−1
X

n=1

an (r2l−n + r2l+n); l ∈ Z; (5.29)

where an are given in (5.19). Using (5.20) we obtain (5.14) from (5.29).
In order to obtain (5.15) we use the following relation

l=+∞
X

l=−∞

lm’(x− l) = xm +
l=m
X

l=1

(−1)l

 

m
l

!

M’
l x

m−l; (5.30)

where

M’
l =

Z +∞

−∞
’(x) xl dx; l = 1; : : : ; m; (5.31)

are the moments of the function ’(x). Relation (5.31) follows simply on taking Fourier
transforms and using Leibniz’ rule. Using (5.8) and (5.30) with m = 1 we obtain (5.15).

If M ≥ 2, then
|’̂(�)|2|�| ≤ C(1 + |�|)−1−�; (5.32)

where � > 0, and hence, the integral in (5.13) is absolutely convergent. This assertion
follows from Lemma 3.2 of [19], where it is shown that

|’̂(�)| ≤ C(1 + |�|)−M+log
2

B; (5.33)

where
B = sup

�∈R

|Q(ei�)|:

Due to the condition (2.36), we have log2B = M − 1 − � with some � > 0.
The existence of a solution of the system of equations (5.14) and (5.15) follows

from the existence of the integral in (5.13). Since the scaling function ’ has a compact
support there are only fi-178.007 -19.68 Td
(l)Tj
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(with)Tj
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where
r̂(�) =

X

l

rle
il�; (5.36)

r̂even(�=2) =
X

l

r2le
il�; (5.37)

and
r̂odd(�=2) =

X

l

r2l+1e
i(2l+1) �=2: (5.38)

Noticing that
2 r̂even(�=2) = r̂(�=2) + r̂(�=2 + �) (5.39)

and
2 r̂odd(�=2) = r̂(�=2) − r̂(�=2 + �); (5.40)

and using (5.18), we obtain from (5.35)

r̂(�) =
h

r̂(�=2) + r̂(�=2 + �) +
�

2|m0(�=2)|2 − 1
�

(r̂(�=2) − r̂(�=2 + �) )
i

: (5.41)

Finally, using (2.26) we arrive at

r̂(�) = 2
�

|m0(�=2)|2 r̂(�=2) + |m0(�=2 + �)|2 r̂(�=2 + �)
�

: (5.42)

Setting � = 0 in (5.42) we obtain r̂(0) = 2r̂(0) and, thus, (5.34).
Uniqueness of the solution of (5.14) and (5.15) follows from the uniqueness of

the representation of d=dx. Given the solution rl of (5.14) and (5.15) we consider the
operator Tj defined by these coefficients on the subspace Vj and apply it to a sufficiently
smooth function f . Since rj

l = 2−jrl (5.4), we have

(Tjf)(x) =
X

k∈Z

 

2−j
X

l

rl fj;k−l

!

’j;k(x); (5.43)

where

fj;k−l = 2−j=2
Z +∞

−∞
f(x)’(2−jx



where x̃ = x̃(x; x− 2jl) and |x̃− x| ≤ 2jl. Substituting (5.46) in (5.43) and using (5.34)
and (5.15), we obtain

(Tjf)(x) =
X

k∈Z

�
Z +∞

−∞
f ′(x)’j;k(x) dx

�

’j;k(x) +

2j
X

k∈Z

 

1
2

X

l

rll
2
Z +∞

−∞
f ′′(x̃)’j;k(x) dx

!

’j;k(x): (5.47)

It is clear that as j → −∞, operators Tj and d=dx coincide on smooth functions. Using
standard arguments it is easy to prove that T−∞ = d=dx and hence, the solution to (5.14)
and (5.15) is unique. The relation (5.17) follows now from (5.13).

Remark 2. We note that expressions (5.9) and (5.10) for �l and �l (l = −�−l) may
be simplified by changing the order of summation in (5.9) and (5.10) and introducing
the correlation coefficients 2

PL−1−n
i=0 gi hi+n, 2

PL−1−n
i=0 hi gi+n and 2

PL−1−n
i=0 gi gi+n. The

expression for �l is especially simple, �l = 4r2l − rl.

Examples. For the examples we will use Daubechies’ wavelets constructed in [19]. First,
let us compute the coefficients a2k−1, k = 1; : : : ;M , where M is the number of vanishing
moments and L = 2M . Using relation (4.22) of [19],

|m0(�)|2 = 1 − (2M − 1)!

[(M − 1)!]2 22M−1

Z �

0
sin2M−1 � d�; (5.48)

we find, by computing
R �
0 sin2M−1 � d�, that

|m0(�)|2 = 1
2

+ 1
2
CM

M
X

m=1

(−1)m−1 cos(2m− 1)�

(M −m)! (M +m− 1)! (2m− 1)
; (5.49)

where

CM =

"

(2M − 1)!

(M − 1)! 4M−1

#2

: (5.50)

Thus, by comparing (5.49) and (5.18), we have

a2m−1 =
(−1)m−1 CM

(M −m)! (M +m− 1)! (2m− 1)
; where m = 1; : : : ;M: (5.51)

We note that by virtue of being solutions of a linear system with rational co-
efficients (a2m−1 in (5.51) are rational by construction), the coefficients rl are rational
numbers. The coefficients rl are the same for all Daubechies’ wavelets with a fixed number
of vanishing moments M , while there are several wavelet bases for a given +

j , while 58999 0 Td
(giv)Tj
14.8589 0 Td
(en)Tj
/R33 11.9552 Tf
15.3524eare +

j en
of en Γp
8.03252 0 Td
(a)Tolynomial24 0 T0 0 2



Solving equations of Proposition 1, we present the results for Daubechies’ wavelets
with M = 2; 3; 4; 5; 6.
1. M = 2

a1 =
9

8
; a3 = −1

8
;

and

r1 = −2

3
; r2 =

1

12
;

The coefficients (−1=12; 2=3; 0;−2=3; 1=12) of this example can be found in many books
on numerical analysis as a choice of coefficients for numerical differentiation.

2. M = 3

a1 =
75

64
; a3 = − 25

128
; a5 =

3

128
;

and

r1 = −272

365
; r2 =

53

365
; r3 = − 16

1095
; r4 = − 1

2920
:

3. M = 4

a1 =
1225

1024
; a3 = − 245

1024
; a5 =

49

1024
; a7 = − 5

1024
;

and

r1 = −39296

49553
; r2 =

76113

396424
; r3 = − 1664

49553
;

r4 =
2645

1189272
; r5 =

128

743295
; r6 = − 1

1189272
:

4. M = 5

a1 =
19845

16384
; a3 = −2205

8192
; a5 =

567

8192
; a7 = − 405

32768
; a9 =

35

32768
;

and

r1 = − 957310976

1159104017
; r2 =

265226398

1159104017
; r3 = − 735232

13780629
;

r4 =
17297069

2318208034
; r5 = −



5. M = 6

a1 =
160083

131072
; a3 = − 38115

131072
; a5 =

22869

262144
;

a7 = − 5445

262144
; a9 =

847

262144
; a11 = − 63

262144
;

and

r1 =
3986930636128256

4689752620280145
; r2 =

4850197389074509

18759010481120580
; r3 =

1019185340268544

14069257860840435
;

r4 =
136429697045009

9379505240560290
; r5 =

7449960660992

4689752620280145
; r6 =

483632604097

112554062886723480
;

r7 =
78962327552

6565653668392203
; r8 =

31567002859

75036041924482320
; r9 =

2719744

937950524056029
;

r10 =
1743

2501201397482744
:

Coefficients for M = 5 and M = 6 can be compared with the corresponding
output from the following iterative algorithm.

Iterative algorithm for computing the coe�cients rl.
As a way of solving equations (5.14) and (5.15) we may also use an iterative

algorithm. We start with r−1 = 0:5 and r1 = −0:5 and iterate using (5.14) to recompute
rl. It is easy to verify using (5.42) that (5.15) and (5.17) are satisfied due to the choice
of initialization. The following 1 for Daubechies’ wavelets with M = 5; 6; 7; 8; 9 was
computed using this algorithm. It displays the coefficients {rl}L−2

l=1 . We note, that r−l =
−rl and r0 = 0.

V.2 The operators dn=dxn in the wavelet bases

Similar to the operator d=dx, the non-standard form of the operator dn=dxn is completely
determined by its representation on the subspace V0, i.e., by the coefficients

r
(n)
l =

Z +∞

−∞
’(x− l)

dn

dxn
’(x) dx; l ∈ Z; (5.52)

or, alternatively,

r
(n)
l =

Z +∞

−∞
(−i�)n |’̂(�)|2 e−il� d�: (5.53)

if the integrals in (5.52) or (5.53) exist (see also Remark 3 below).
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Coe�cients Coe�cients
l rl l rl

M = 5 1 -0.82590601185015 M = 8 1 -0.88344604609097
2 0.22882018706694 2 0.30325935147672
3 -5.3352571932672E-



Proposition V.2 1. If the integrals in (5.52) or (5.53) exist, then the coe�cients

r
(n)
l , l ∈ Z satisfy the following system of linear algebraic equations

r
(n)
l = 2n

2

4r2l + 1
2

L=2
X

k=1

a2k−1(r
(n)
2l−2k+1 + r

(n)
2l+2k−1)

3

5 ; (5.54)

and
X

l

ln r
(n)
l = (−1)n n!; (5.55)

where a2k−1 are given in (5.19).

2. Let M ≥ (n + 1)=2, where M is the number of vanishing moments in (2.16). If
the integrals in (5.52) or (5.53) exist, then the equations (5.54) and (5.55) have a

unique solution with a �nite number of non-zero coe�cients r
(n)
l , namely, r

(n)
l 6= 0

for −L + 2 ≤ l ≤ L− 2. Also, for even n

r
(n)
l = r

(n)
−l ; (5.56)

X

l

l2ñ r
(n)
l = 0; ñ = 1; : : : ; n=2 − 1; (5.57)

and
X

l

r
(n)
l = 0; (5.58)

and for odd n
r
(n)
l = −r(n)

−l ; (5.59)
X

l

l2ñ−1 r
(n)
l = 0; ñ = 1; : : : ;+ 2 ≤ l ≤ L

e M+ M�. Td/R36 7.97 0 Td
(r1885R36 7.97 0 Td
(r3085R36 7.94989 0 Td97 
23.4897 08271 0 Td
(3 Td69252 Tf
17.513)Tj
1.9552 Tf
nts)Tj
)Tj74.6922 0 Tnalogou(gr)Tj3.9445.2351 0  Td
(�. Td3.4897 0that 0 Td9741R5R36 7.97 0 Td
(r3085R36 7.94989 0 Td97 
23.4897 08271 0 Td
(3 TTd39 Td
(;)T.0 Td
(L85.272 -14.4 Td2(in)40 T5 7.97011Remar.5917d
(l)
(l)Tj
/R3.1917 0 Td
(M)Tj
/R5.955Tj
/R19 7..513)T82 Tf
12.58952))T5664 0 Td
())Tj
/R2344.388 0 Td
(van 0 Td
(n)Tj
/R1R36
(1))Tj
/R33 11.9552 Tf
10.4249 03Td
(=)Tj
/R16 11.9552 Tf
5.86997 0 Td
(2)Tj
/R55 11.9552 Tf
5.869979)Tj
29552 Tf
51848 0 10
(wher)Tj
23.4897 0 Td
(e)Tj
/R33 11.9552 Tf
10.1917 0 Td
(M)Tj
/R55 11.9552 Tf
17,0 Td
(r42
(wher)Tj/R19 7.9701107wher)Tj/R1 7.973 02Td
(()Tjf)Tj
13.788 0 T7que)Tj
37.2 0 Td
(r)Tj22 0 Td
(in)Tj
14.02Td
(()Tj-213(L)Tj
34.6
19.4189 j
4.7918 0 R4206
(M)Tj
/R45 11.951595R36 7.94989 0 Td97 
23.4897 08271 0 Td
(39 7.9252 Tf
17.51310 3j
46 7.97011 Tfm10.069)Tj
95R36 7.9j
17.(a 7.9701j
.
(=)Tj
/whil18 0 Td
5(r)Tj
/R19R45 119.35.23586 0 TtegrTd
(the3 Td51 Tf
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2259 0 Td
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ec5 119.942vanTd
(()Tj
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We note that among the wavelets with L = 4, the wavelets with two vanishing
moments M = 2 do not have the best Hölder exponent (see [21]), but the representation
of the third derivative exists only if the number of vanishing moments M = 2.

The equations for computing the coefficients r
(n)
l may be viewed as an eigenvalue

problem. Let us derive the equation corresponding to (5.42) for dn=dxn directly from
(5.53). We rewrite (5.53) as

r
(n)
l =

Z 2�

0

X

k∈Z

|’̂(� + 2�k)|2 in (� + 2�k)ne−il� d�: (5.61)

Therefore,
r̂(�) =

X

k∈Z

|’̂(� + 2�k)|2 in (� + 2�k)n; (5.62)

where
r̂(�) =

X

l

r
(n)
l eil�: (5.63)

Substituting the relation
’̂(�) = m0(�=2)’̂(�=2); (5.64)

into the right hand side of (5.62), and summing over even and odd indices in (5.62)
separately, we arrive at

r̂(�) = 2n
�

|m0(�=2)|2 r̂(�=2) + |m0(�=2 + �)|2 r̂(�=2 + �)
�

: (5.65)

Let us consider the operator M0 on 2�-periodic functions

(M0f)(�) = |m0(�=2)|2 f(�=2) + |m0(�=2 + �)|22)|2’dicfunc70859 4.92 1 T
(fu14832 -4.92002 Td
(652 Tf
10.42442)Tj
19.17740 Td
(from)Tj
-425.484 -14.4 Td
((5.53).)Tj
38.356823 11.9552 Tf
5031 0 Td
m)TTj
9.11265 0 Td
(rewrite)Tj
3998.0742ng

(2 n〉2 ;̂�

2 o2ng but = 4, the 2 0 T2 Tofr879 0 Td
(vequ3.3085 6(2)T 0 Td
(e)lTj
15.5017 0but)Tj
21



in wavelet bases, the numerical evidence illustrating this fact is of interest, since it rep-
resents one of the advantages of computing in the wavelet bases.

F8747 0999 069umericales.



N � �p

64 0.14545E+04 0.10792E+02

128 0.58181E+04 0.11511E+02

256 0.23272E+05 0.12091E+02

512 0.93089E+05



VI The convolution operators in wavelet bases

In this Section we consider the computation of the non-standard form of convolution
operators. For convolution operators the quadrature formulas for representing the kernel
on V0 are of the simplest form duethe



Using (6.8) and the identity ’̂(�) = ’̂(�=2)m0(�=2) (see [19]), it follows from (5.25) that
(6.7) holds.

Since the moments of the function Φ vanish, (6.7), equation (6.4) leads to a one-
point quadrature formula for computing the representation of convolution operators on
the finest scale for all compactly supported wavelets. This formula is obtained in exactly
the same manner as for the special choice of the wavelet basis described in [7] (eqns.
3.8-3.12), where the shifted moments of the function ’ vanish; we refer to this paper for
the details.

Here we introduce a different approach, which consists in solving the system of
linear algebraic equations (6.2) subject to asymptotic conditions. This method is espe-
cially simple if the symbol of the operator is homogeneous of some degree since in this
case the operator is completely defined by its representation on V0.

Let us consider two examples of such operators, the Hilbert transform and the
operator of fractional differentiation (or anti-differentiation).

VI.1 The Hilbert Transform

We apply our method to the computation of the non-standard form of the Hilbert trans-
form

g(x) = (Hf)(y) =
1

�
p.v.

Z ∞

−∞

f(s)

s− x
ds; (6.9)

where p.v. denotes a principal value at s = x.
The representation of H on V0 is defined by the coefficients

rl =
Z ∞

−∞
’(x− l) (H’)(x) dx; l ∈ Z; (6.10)

which, in turn, completely define all other coefficients of the non-standard form. Namely,
H = {Aj; Bj;Γj}j∈Z, Aj = A0, Bj = B0, and Γj = Γ0, where matrix ert80005ilb



Coe�cients Coe�cients
l rl l rl

M = 6 1 -0.588303698 9 -0.035367761
2 -0.077576414 10 -0.031830988
3 -0.128743695 11 -0.028937262
4 -0.075063628 12 -0.026525823
5 -0.064168018 13 -0.024485376
6 -0.053041366 14 -0.022736420
7 -0.045470650 15 -0.021220659
8 -0.039788641 16 -0.019894368

Table 4: The coefficients rl, l = 1; : : : ; 16 of the Hilbert transform for Daubechies’ wavelet
with six vanishing moments.

The coefficients rl, l ∈ Z in (6.10) satisfy the following system of linear algebraic
equations

rl = r2l + 1
2

L=2
X

k=1

a2k−1(r2l−2k+1 + r2l+2k−1); (6.14)

where the coefficients a2k−1 are given in (5.19). Using (6.4), (6.6) and (6.7) we obtain
the asymptotics of rl for large l,

rl = − 1

�l
+O(

1

l2M
): (6.15)

By rewriting (6.10) in terms of ’̂(�),

rl = −2
Z ∞

0
|’̂(�)|2 sin(l�) d�: (6.16)

we obtain rl = −r−l and set r0 = 0. We note that the coefficient r0 cannot be determined
from equations (6.14) and (6.15).

Solving (6.14) with the asymptotic condition (6.15), we compute the coefficients
rl, l 6= 0 with any prescribed accuracy.
Example.

We compute the coefficients rl of the Hilbert transform for Daubechies’ wavelets
with six vanishing moments with accuracy 10−7. The coefficients for l > 16 are obtained
using asymptotics (6.15). (We note that r−l = −rl and r0 = 0).
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VI.2 The fractional derivatives

We use the following definition of fractional derivatives

(@�
x f) (x) =

Z +∞

−∞

(x− y)−�−1
+

Γ(−�)
f(y)dy; (6.17)

where we consider � 6= 1; 2 : : :. If � < 0, then (6.17) defines fractional anti-derivatives.
The representation of @�

x on V0 is determined by the coefficients

rl =
Z +∞

−∞
’(x− l) (@�

x’) (x) dx; l ∈ Z; (6.18)

provided that this integral exists.
The non-standard form @�

x = {Aj; Bj;Γj}j∈Z is computed via Aj = 2−�jA0, Bj =
2−�jB0, and Γj = 2−�jΓ0, where matrix elements �i−l, �i−l, and i−l of A0, B0, and Γ0

are obtained from the coefficients rl,

�i = 2�
L−1
X

k=0

L−1
X

k′=0

gk gk′ r2i+k−k′; (6.19)

�i = 2�
L−1
X

k=0

L−1
X

k′=0

gk hk′ r2i+k−k′; (6.20)

and

i = 2�
L−1
X

k=0

L−1
X

k′=0

hk gk′ r2i+k−k′: (6.21)

It easy to verify that the coefficients rl satisfy the following system of linear
algebraic equations

rl = 2�

2

4r2l + 1
2

L=2
X

k=1

a2k−1(r2l−2k+1 + r2l+2k−1)

3

5 ; (6.22)

where the coefficients a2k−1 are given in (5.19). Using (6.4), (6.6) and (6.7) we obtain
the asymptotics of rl for large l,

rl =
1

Γ(−�)

1

l1+�
+O(

1

l1+�+2M
) for l > 0; (6.23)

rl = 0 for l < 0: (6.24)

Example.
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Coe�cients Coe�cients
l rl l rl

M = 6 -7 -2.82831017E-06 4 -2.77955293E-02
-6 -1.68623867E-06 5 -2.61324170E-02
-5 4.45847796E-04 6 -1.91718816E-02
-4 -4.34633415E-03 7 -1.52272841E-02
-3 2.28821728E-02 8 -1.24667403E-02
-2 -8.49883759E-02 9 -1.04479500E-02
-1 0.27799963 10 -8.92061945E-03
0 0.84681966 11 -7.73225246E-03
1 -0.69847577 12 -6.78614593E-03
2 2.36400139E-02 13 -6.01838599E-03
3 -8.97463780E-02 14 -5.38521459E-03



VII Multiplication of operators in wavelet bases

VII.1 Multiplication of matrices in the standard form

The multiplication of matrices of Calderón-Zygmund and pseudo-differential operators
in the standard form requires at most O(N log2N) operations. In addition, it is possible
to control the width of the “finger” bands by setting to zero all the entries in the product
below a threshold of



and, therefore,
||T̃ T̂ − (T̃�T̂�)�|| ≤ �+ �(1 + �) + �(1 + �)2: (7.6)

The right hand side of (7.6) is dominated by 3�. For example, if we compute T 4 then we
might lose one significant digit.

VII.2 Multiplication of matrices in the non-standard form

We will now outline an algorithm for the multiplication of the operators in the non-
standard form. This new algorithm is remarkable in the way it decouples the scales in
the process of multiplication. Let T̂ and T̃ be two operators

T̂ ; T̃ : L2(R) → L2(R): (7.7)

Given the non-standard forms of T̂ and T̃ , {Âj; B̂j; Γ̂j}j∈Z and {Ãj; B̃j; Γ̃j}j∈Z, we com-

pute the non-standard form {Aj; Bj;Γj}j∈Z of T = T̂ T̃ .
We recall that the operators of



Finally, we rewrite (7.10) as a sum of two terms,

T̂0T̃0 = F +R; (7.11)

where

F =
j=n
X

j=1

h

(ÂjÃj + B̂jΓ̃j) + (B̂jT̃j + ÂjB̃j) + (T̂jΓ̃j + Γ̂jÃj)
i

(7.12)

and

R = T̂nT̃n +
j=n
X

j=1

PjΓ̂jB̃jPj (7.13)

The operators in the sum (7.12) are acting on following the subspaces,

ÂjÃj + B̂jΓ̃j : Wj → Wj; (7.14)

B̂jT̃j + ÂjB̃j : Vj → Wj; (7.15)

T̂jΓ̃j + Γ̂jÃj : Wj → Vj; (7.16)

and the operators in the sum (7.13),

Γ̂jB̃j : Vj → Vj: (7.17)

where j = 1; : : : ; n, 
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of operations is halved each time we go to the sparser scale, the total number of
operations at this step is proportional to N .

The resulting operators Āj, B̄j, Γ̄j, j = 2; : : : ; n, .tot49
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VIII Fast iterative algorithms in wavelet bases

The fast multiplication algorithms of Section VII give a second life to a number of iterative
algorithms.

VIII.1 An iterative algorithm for computing the generalized
inverse

In order to



procedure, and via the iteration (8.1)-(8.2) in the wavelet basis using Fast Wavelet Trans-
form (FWT). The computations were performed on Sun Sparc workstation and we used
a routine from LINPACK for computing the singular value decomposition. For tests we
used the following full rank matrix

Aij =

8

>

<

>

:

1
i−j

i 6= j

1 i = j

;

where i; j = 1; : : : ; N . The accuracy threshold was set to 10−4, i.e., entries of Xk below
10−4 were systematically removed after each iteration.

Size N × N SVD FWT Generalized Inverse L2-Error

128× 128 20.27 sec. 25.89 sec. 3:1 · 10−4

256× 256 144.43 sec. 77.98 sec. 3:42 · 10−4

512× 512 1,155 sec. (est.) 242.84 sec. 6:0 · 10−4

1024× 1024 9,244 sec. (est.) 657.09 sec. 7:7 · 10−4

. . . . . . . . . . . .

215 × 215 9.6 years (est.) 1 day (est.)

Let us describe several iterative algorithms indicating that numerical functional
calculus with operators can be implemented efficiently (at least for pseudo-differential op-
erators). Numerical results and relative performance of these algorithms will be reported
separately.

VIII.2 An iterative algorithm for computing the projection op-

erator on the null space.

Let us consider the following iteration

Xk+1 = 2Xk −X2
k (8.3)

with
X0 = �A∗A; (8.4)

where A∗ is the adjoint matrix and � is chosen the value of �A ∗

w.v



Then I−Xk converges to Pnull. This can be shown either directly or by combining
an invariant representation for Pnull = I − A∗(AA∗)†A with the iteration (8.1)-(8.2) to
compute the generalized inverse (AA∗)†. The fast multiplication algorithm makes the
iteration (8.3)-(8.4) fast for a wide class of operators (with the same complexity as the
algorithm for the generalized inverse). The important difference is, however, that (8.3)-
(8.4) does not require compressibility of the inverse operator but only of the powers of
the operator.

VIII.3 An iterative algorithm for computing a square root of
an operator.

Let us describe an iteration to construct both A1=2 and A−1=2, where A is, for simplicity,
a self-adjoint and non-negative definite operator. We consider the following iteration

Yl+1 = 2Yl − YlXlYl; (8.5)

Xl+1 =
1

2
(Xl + YlA); (8.6)

with

Y0 =
�

2
(A+ I);

X0 =
�

2
(A+ I); (8.7)

where � is chosen so that the largest eigenvalue of �
2
(A+ I) is less than

√
2.

The sequence Xl converges to A1=2 and Yl to A−1=2. By writing A = V ∗DV , where
D is a diagonal and V is a unitary, it is easy to verify that both Xl and Yl can be written
as Xl = V ∗PlV and Yl = V ∗QlV , where Pl and Ql are diagonal and

Ql+1 = 2Ql −QlPl
� l

aslPmakes the
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VIII.4 Fast algorithms for computing the exponential, sine and
cosine of a matrix

The exponential of a matrix (or an operator), as well as sine and cosine functions are
among the first to be considered in any calculus of operators. As in the case of the
generalized inverse,



IX Computing F (u) in the wavelet bases

In this Section we describe a fast, adaptive algorithm for computing F (u), where F is an
infinitely differentiable function and u is represented in a wavelet basis. An important
example is F (u) = u2. Our analytic results generalize theorems of J. M. Bony [10], [11],
[9], [15] on the propagation of singularities of solutions of non-linear equations. Our
numerical approach, however, is novel. We expect a wide range of applications of this
algorithm.

IX.1 The algorithm for evaluating u2

We start with an algorithm to compute F (u) = u2. Let us project u ∈ L2(R) on
subspaces Vj, j ∈ Z, so that

uj = Pju; uj ∈ Vj: (9.1)

In order to decouple the scales, we write a “telescopic” series,

u2
0 − u2

n =
j=n
X

j=1

h

(Pj−1u)
2 − (Pju)

2
i

=
j=n
X

j=1

(Pj−1u+ Pju)(Pj−1u− Pju) (9.2)

Using Pj−1 = Pj +Qj, we obtain

u2
0 − u2

n =
j=n
X

j=1

(2P



Before proceeding further, let us consider an example of (9.4) in the Haar basis.
We have the following explicit relations,

(�j
k(x))

2 = 2−j=2�j
k(x);

(hj
k(x))

2 = 2−j=2�j
k(x); (9.7)

�j
k(x)h

j
k(x) = 2−j=2hj

k(x):

All other products on the same scale are zero.
Expanding u0 explicitly into the Haar basis,

u0(x) =
j=n
X

j=1

X

k∈Z

dj
kh

j
k(x) +

X

k∈Z

sn
k�

n
k(x); (9.8)

and using (9.7), we obtain from (9.4)

u2
0(x) = 2

j=n
X

j=1

2−j=2
X

k∈Z

dj
ks

j
k h

j
k(x) +

j=n
X

j=1

2−j=2
X

k∈Z

(dj
k)

2 �j
k(x) + 2−n=2

X

k∈Z

(sn
k)2 �n

k(x): (9.9)

On denoting

d̂j
k = 2−j=2+1dj

ks
j
k;

ŝj
k = 2−j=2(dj

k)
2; (9.10)

ŝn
k = 2−n=2(sn

k)
2;

we rewrite (9.9) as

u2
0(x) =

j=n
X

j=1

X

k∈Z

d̂j
k h

j
k(x) +

j=n
X

j=1

X

k∈Z

ŝj
k �

j
k(x) +

X

k∈Z

ŝn
k �

n
k(x): (9.11)

We note that if the coe�cient dj
k is zero then there is no need to keep the corresponding

average sj
k. In other words, we need to keep averages only near the singularities, i.e.,

where the wavelet coefficients dj
k ( or products sj

kd
j
k) are significant for a given accuracy





of coefficients which need to be stored may be reduced further by observing that, for
example,

M j;j′

WWW (k; k′; l) = 2−j′=2
Z +∞

−∞
 j−j′

0 (x) j−j′

k−k′(x) 0
2j−j′k−l

(x) dx; (9.22)

so that
M j;j′

WWW (k; k′; l) = 2−j′=2M̃ j−j′

WWW (k − k′; 2j−j′k − l): (9.23)

However, the most significant reduction in the number of coefficients is a conse-
quence of the fact that the coefficients in (9.16)-(9.18) decay as the distance r = j − j ′

between the scales



If the number of significant coefficients dj
k is proportional to the number of scales,

log2N , so will be the number of operations required to evaluate the mappings (9.13)-
(9.15). It is also clear, that it is necessary to store only those averages sj

k′, which combine
with the significant coefficients dj

k to produce a non-zero contribution. Therefore, it
is sufficient to store only those sj

k′, for which there exist the coefficient dj
k, such that

|k− k′| ≤ k0 and the product sj
k′d

j
k is above the threshold of accuracy. It means that we

need to store averages only in the neighborhood of singularities.
The number of operation for expanding of the second term in (9.26) into the

wavelet basis is proportional to the number of significant entries, and the estimate is
completely similar to that for the Haar basis.
Remark. The algorithm for evaluation F (u) = u2 in the wavelet basis allows us to
evaluate the product of two functions, since uv = 1

4
[(u+ v)2 − (u− v)2].

IX.2 The algorithm for evaluating F (u)

Let F be an infinitely differentiable function. In order to decouple the scales, we again
use a “telescopic” series,

F (u0) − F



We note that there is no term with the second derivative of F in (9.31) (there are no even
derivatives in (9.29)). Using (9.30) and considering the remainder of the series in (9.29)
as an error term, we obtain the results of J.M. Bony. The error term, however, will be
slightly smoother than in Bony’s results, since the remainder has a factor (Qju)

3 instead
of (Qju)

2. We may also keep more terms to make the remainder arbitrarily smooth.
It is not clear at this point, if there is an advantage in computing F (u) via (9.29),

or a repeated application of the algorithm for F (u) = u2 is sufficient to compute various
functions F . However, there are several analytic advantages in considering (9.29). In
particular, by using theorems characterizing the
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