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Abstract. We introduce a new, quadratically convergent algorithm for find-
ing maximum absolute value entries of tensors represented in the canonical
format. The computational complexity of the algorithm is linear in the dimen-
sion of the tensor. We show how to use this algorithm to find global maxima
of non-convex multivariate functions in separated form. We demonstrate the
performance of the new algorithms on several examples.

1. Introduction

Finding global extrema of a multivariate function is an ubiquitous task with
many approaches developed to address this problem (see e.g. [19]). Unfortunately,
no existing optimization method can guarantee that the results of optimization
are true global extrema unless restrictive assumptions are placed on the function.
Assumptions on smoothness of the function do not help since it is easy to construct
an example of a function with numerous local extrema “hiding” the location of
the true one. While convexity assumptions are helpful for finding global maxima,
in practical applications there are many non-convex functions. For non-convex
functions various randomized search strategies have been suggested and used but
none can assure that the results are true global extrema (see, e.g., [27, 19]).

We propose a new approach to the problem of finding global extrema of a mul-
tivariate function under the assumption that the function has certain structure,
namely, a separated representation with a reasonably small separation rank. While
this assumption limits the complexity of the function, i.e. number of independent
degrees of freedom in its representation, there is no restriction on its convexity.
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> 0 are referred to as s-values. In this approximation the functions
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), j = 1, . . . , d are not fixed in advance but are optimized in order to achieve
the accuracy goal with (ideally) a minimal separation rank r. In (2.1) we set
x

j

2 R while noting that in general the variables x

j

may be complex-valued or low
dimensional vectors. Importantly, a separated representation is not a projection
onto a subspace, but rather a nonlinear method to track a function in a high-
dimensional space using a small number of parameters. We note that the separation
rank indicates just the nominal number of terms in the representation and is not
necessarily minimal.

Any discretization of the univariate functions u

(l)

j
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(ALS) which was introduced originally for data fitting as the PARAFAC (PARAllel
FACtor) [18] and the CANDECOMP [10] models. ALS has been used extensively
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Algorithm 2
To find the entries with maximum absolute value of a tensor U
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the largest s-value. However, we have not encountered such a situation using the
s-norm in practical problems.

3.3. Numerical demonstration of convergence. We construct an experiment
using random tensors, with low separation rank (r = 4 in what follows), in dimen-
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Another interesting case occurs when a tensor has multiple maximum entry
candidates, either close to or exactly the same in magnitude. To explore this case,
we construct an experiment similar to the previous one, namely, find the maximum
absolute value of a CTD of dimension d = 6 and M = 32 samples in each direction.



OPTIMIZATION VIA SEPARATED REPRESENTATIONS AND THE CTD 8

to yield a CTD appropriate for use with Algorithm 2. The second, more gen-
eral problem, is to construct a separated representation given data or an analytic
expression of the function, from which a CTD can then be built.

In the first problem the objective function is already represented in separated
form as in (2.1), and an interpolation scheme is associated with each direction. Such
problems have been subject to growing interest due to the use of CTDs for solving
operator equations, e.g., deterministic or stochastic PDE/ODE systems (see, for
example, [5, 6, 13, 24, 11, 12]).

In the second problem the goal is to optimize a multivariate function where no
separated representation is readily available. What typically is available is a data
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scale linearly with respect to the number of samples in each direction [6]. However,
the total number of samples needed to satisfy the local interpolation requirement
may be large and, thus, additional steps to accelerate the reduction algorithm ⌧

ε

in Algorithm 2 may be required. One such technique consists of using the QR

factorization as explained in [8, Section 2.4].
An example of applying analytic techniques to put a function in separated form

and subsequently using Algorithm 2 to optimize the separated function is provided
in Section 5.2.

5. Numerical examples

5.1. Comparison with power method algorithm from Section 2.2. To test
Algorithm 2, we construct tensors from random factors and find the entries with
the largest absolute value. For these examples we select dimension d
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for 0 < � < x < 1. We arrive at the approximation of the first term in (5.1),

(5.4)
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the genetic algorithm uses different initial populations for each test. The largest
maximum found by Algorithm 2 in the 500 tests was 8.744 ⇥ 10

�1, with mean
8.731 ⇥ 10

�1 and standard deviation 5.7 ⇥ 10

�4. For comparison, the largest max-
ima found by the genetic algorithm in these tests was 8.750 ⇥ 10

�1, with mean
8.747 ⇥ 10

�1 and standard deviation 3.6 ⇥ 10

�4. Taking into account that the
accuracy of solving (5.5) and the RMS validation error of the separated represen-
tation are both of the same order as the computed standard deviations, the results
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