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A. Gross-Pitaevskii and the Navier-Stokes equations



where smooth, solutions to the dissipative regularization of
the Euler equations, it is necessary to maintain the form of
the conservation laws as derived directly from the original
integral formulation �1.4�. It is well known that weak solu-
tions to different forms of the same conservation law can be
quite different. One must also be careful when dealing with
the vacuum state 
=0 as in classical gas dynamics. The mo-
mentum equation �1.5� takes both of these issues into ac-
count.

II. EXPERIMENT

In order to investigate the fundamental nature of shock
waves in a quantum fluid, we have performed new experi-
ments that involve blast pulses in BECs. In contrast to the
experiments described in Ref. �3�, the experiments analyzed
in this work are all done with nonrotating condensates. We
have succeeded in directly imaging dispersive shock waves
in these systems, and the particular geometry of these experi-
ments makes them amenable to the theoretical analysis pre-
sented in this paper.

Condensates consisting of approximately 3.5 million Rb
atoms were prepared in an axisymmetric trap with trapping
frequencies of ��� ,�z�=2��8.3,5.3� Hz; �� is the radial
frequency and �z is the axial frequency. After the condensate



suggestive to attribute them to the presence of vortices in the
rotating BEC. We speculate that the spokes come about when
vortices are present in the compressional ring formed by the
blast. As this ring expands and forms the concentric ring
system, the density depressions of the vortices are not filled
in due to the predominantly radial expansion of the compres-
sional ring. For the slow rotation rates in this experiment, the
number of spokes is in agreement with the expected number
of vortices. But the shot-to-shot irreproducibility of the vor-
tex number in such slowly rotating BECs does not allow for
a more precise quantitative comparison. In rapidly rotating





The rest of this paper is concerned with understanding the
oscillatory structures that developed in Figs. 3 and 5 as we
will argue that they are dispersive shock waves �DSWs� with
the oscillations in the latter figure caused by the interaction
of two DSWs.

IV. CLASSICAL AND DISPERSIVE SHOCK WAVES

In this section, the notions of classical shock waves and
dispersive shock waves are discussed. We provide a theoret-
ical basis for the experimental and numerical results pre-
sented in the previous sections. Using the classical gas-
dynamics analogy, it is shown that shocks in a BEC are





u�x , t� for the conservation law �4.4� satisfies the integral
formulation

d

dt
�

a

b

u�x,t�dx +
1

2
�u�b,t�2 − u�a,t�2� = 0, �4.6�

for any a ,b, such that −��a�b��



B. Dispersive shock waves, Korteweg–de Vries equation

As a simple model of DSWs �e.g., in plasmas �21��, we
consider the Korteweg–deVries �KdV� equation

ut + �1

2
u2�

x
= − �2uxxx, �4.12�

for �2�1. We investigate the behavior of the solution to the
IVP

u�x,0;�� = �1, x � 0

0, x � 0
� �4.13�

as �2→0. This is a Riemann problem in the context of a
dispersive regularization of the conservation law �4.4� with
no inherent dissipation.

Figure 8 depicts two numerical solutions to Eq. �4.12�
with a slightly smoothed version of the initial condition
�4.13� for small �2. Oscillations develop about the initial
jump with wavelength decreasing as �



L = 2K�m�	 6

r3 − r1
,

where K�m� is the complete elliptic integral of the first kind
�25�. Note that L is obtained from the periodicity of the dn

function �4.14�, i.e., �	 r3−r1

6 ��=2K�m� where �·� is the period
of the argument. The parameter m is the modulus of the
elliptic function. See Fig. 9 for a plot of � for various values
of m. There are two limiting behaviors dn�y ;0�=1 and
dn�y ;1�=sech�y�, the solitary wave solution.

The basic idea behind Whitham theory is in the process of
averaging over “fast” oscillations. This yields the behavior of
the weak limit ū of Eq. �4.12� as �→0. Since � is assumed to
be much smaller than 1 in Eq. �4.12�, the phase �= �x
−Vt� /� is considered a fast variable. The numerical compu-
tations pictured in Fig. 8 suggest that modulations of this
periodic solution take place on the scale of the slow variables
x and t, i.e., �ri=ri�x , t��, i=1,2 ,3. Then the average of � is

�̄�x,t� =
1

L
�

0

L

���,x,t�d� = r1�x,t� + r2�x,t� − r3�x,t�

+ 2�r3�x,t� − r1�x,t��
E�m�x,t��
K�m�x,t��

, �4.15�

where E�m� is the complete elliptic integral of the second
kind �25�.

The next step is to write down the first three conservation
equations for the KdV equation �22�

ut + �1

2
u2 + �2uxx�

x
= 0,

�1

2
u2�

t
+ �1

3
u3 + �2uuxx −

1

2
�2ux

2�
x

= 0,

�1

3
u3 − �2ux

2�
t
+ �1

4
u4 − 2�4uxuxxx + �4uxx

2 + �2u2uxx

− 2�2uux
2�

x
= 0. �4.16�

4.16



r1�x,0� � 0, r2�x,0� = �0, x � 0

1, x � 0,
� r3�x,0� � 1,

�4.18�

shown in Fig. 10 regularizes the IVP �4.12� and �4.13� be-
cause of the following properties:

�̄�x,0� = u�x,0;�� �characterization� ,

�ri

�x
�x,0� � 0 �nondecreasing� ,

max
x�R

ri�x,0� � min
x�R

ri+1�x,0� �separability� . �4.19�

Characterization amounts to verifying that the initial data for
the full problem �4.13� is equivalent to the initial data for the
averaged problem �̄; the same assumption is made in the
boundary-matching method �23�. The nondecreasing and
separability of the ri ensure that a global, continuous �non-
breaking� solution to the Whitham equations �4.17� exists for
all time �18,26�.

The system �4.17� with initial data �4.18� has an exact
rarefaction solution in the form of a self-similar simple wave
with r1�0, r3�1, and r2�x , t�=r2���, �=x / t. The remaining
nontrivial equation in �4.17a� takes the form

�v2 − ��r2� = 0,

which is satisfied when the implicit relation v2=� or

1

3
�1 + r2���� −

2

3
r2���

�1 − r2����K�r2����
E�r2���� − �1 − r2����K�r2����

= � ,

�4.20�

is satisfied. The above is one equation for one unknown,
r2���, which is solved by a standard root-finding method for
each � �see Fig. 11�.

The rarefaction wave has two associated speeds v2
− and

v2
+, which are determined from the Whitham equations

�4.17�. Ahead of the moving fronts, the ri are constant. Since

dr2

dt
= 0 when

dx

dt
= v2,

from Eqs. �4.17b�, the speeds are given by the limits

v2
+ = lim

r2→1−
v2�0,r2,1� =

2

3
, �4.21�

v2
− = lim

r2→0+
v2�0,r2,1� = − 1. �4.22�

The dispersive Riemann problem, Eq. �4.12� with initial
data �4.13� and �2�1 or, the leading asymptotic equations
�4.14� and �4.17� with initial data �4.18�, has the asymptotic
��2�1, t�1/�� DSW solution

u�x,t;�� � r2�x/t� − 1 + 2 dn2� x − V�x/t�t
�	6

;m = r2�x/t�� ,

0

0

1

�
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r3that regularize the initial data foru



V�x/t� =
1



of the oscillations is the collisionless shock region over
which a constant connects to a train of sech2 solitons even-
tually leading to small, linear oscillations at the tail.

Thus we have described how to study a dispersive shock
wave associated with KdV in the context of Whitham theory.
A DSW can arise in the dispersive regularization of a con-
servation law just as a classical shock can arise in the dissi-
pative regularization of a conservation law. The key differ-
ence is that a weak limit where one averages over the
oscillations is required in the dispersive case. This method
gives useful results such as the asymptotic modulated oscil-
latory profile, the wavelength of oscillation, the leading am-
plitude, and the speeds of a dispersive shock. On a large
scale, once the limiting process has been accomplished, the
DSW and classical shock look similar, i.e., constants con-
nected by sharp gradients. However, the shock speeds are
different.

On a small mathematical note, Lax and Levermore �31�
used the inverse scattering transform to take the limit �→0
in the KdV equation �4.12� for a broad class of initial data.
They showed that the limit ū is a weak limit in the sense that

lim
�→0
�

−�

�

u�x,t;��f�x�dx = �
−�

�

ū�x,t�f�x�dx

for all smooth, compactly defined functions f�x�. This type of
limiting procedure is required because the solution develops
an infinite number of oscillations. Lax and Levermore also
showed that, in a region of breaking, the weak limit ū can be
calculated explicitly by using the Whitham averaging
method thus giving the Whitham method a stronger math-
ematical footing.

Throughout the rest of this paper, we will use this
dissipative-dispersive analogy with the Burgers’ and KdV
equations to motivate our discussion of the more compli-
cated problem involving the dissipative and dispersive regu-
larizations arising in the context of BEC and gas dynamics.

C. Dissipative regularization of the Euler equations

As mentioned in the Introduction, the compressible equa-
tions of gas dynamics without dissipation are the same as the
local conservation equations for a BEC �1.5� with �=0. Let
us consider the Riemann problem for the dissipative regular-
ization of the Euler equations in one dimension with step
initial data


t + �
u�x = 0,

�
u�t + �
u2 +
1

2

2�

x
= 0,


�x,0� = �
0, x � 0

1, x � 0
�, u�x,0� = �u0, x � 0

0, x � 0
� .

�4.25�

This is a general step initial-value problem with two param-
eters 
0 and u0. Note, if we make the transformation


̃ = 
r
, ũ = 	
ru + ur,

t = 
rt̃, x = 	
r�x̃ − urt̃�, 
r � 0, �4.26�

then we convert the initial conditions in �4.25� to the general
step initial conditions


̃�x̃,0� = �
l = 
r
0, x̃ � 0


r, x̃ � 0
� ,

ũ�x̃,0� = �ul = 	
ru0 + ur, x̃ � 0

ur, x̃ � 0
� .

The unique weak solution to �4.25� consists of, in general,
three constant states connected to one another via two wave
solutions: shocks or centered rarefaction waves �this is a spe-
cial case of Eq. �4.10� for n=2�. We will first study the





V��A +
1

2
A� −

1

2
��2A − A3 = 0. �4.33�

Integrating the first equation and solving for ��, we find

�� = V −
2c1

A2 ,

where c1 is a constant of integration. Inserting this result into
the second equation in Eqs. �4.33� and simplifying gives

A� + V2A −
4c1

2

A3 − 2A3 = 0.

Integrating this equation gives

A�2 + V2A2 +
4c1

2

A2 − A4 + c2 = 0, �4.34�

where c2 is a second constant of integration. To obtain the
elliptic-function solution, let 
=A2; then Eq. �4.34� becomes


�2 = 4�
3 − V2
2 − c2
 − 4c1
2� = 4�
 − �1��
 − �2��
 − �



�
u2 + 
2 + �2 
x
2

4

�

t

+ �
u3 + 2
2u + �2
�



�



u = ��arg ��x,t��x = − W −
�B�2 sech2���

B2 tanh2��� + �2 ,

� = B��x − �B� − W�t − x0�/� , �4.50�

where all parameters �B ,W ,� ,� ,x0� are real and �2+�2=1
�see Fig. 18�. The speed of the gray soliton is

vg = B� − W . �4.51�

It’s minimum density and velocity occur when x= �B�
−W�t+x0 giving the maximum and minimum values


max = max���2 = B2, 
min = min���2 = �B��2,

umax = max ��arg ��x = − W ,

umin = min ��arg ��x = B�� −
1

�
� − W . �4.52�

To find the parameters B, �, and W, we relate the maximums
and minimums of the general gray soliton in Eqs. �4.52� to
the maximums and minimums of the trailing dip in the DSW

of Fig. 17. Equating maxes and mins for the densities, we
find

B = 	
0, � =
2 − 	
0

	
0

. �4.53�

Setting the maximum velocities equal, −W=2	
0−2, we find

W = 2 − 2	
0. �4.54�

So the phase speed �4.51� of the gray soliton with the param-
eters �4.53� and �4.54� is

vg = 	
0,

equivalent to Eqs. �4.49�, the DSW trailing-edge speed. The
trailing edge of the DSW moves with the phase speed of a
gray soliton which, in this case, is the sound speed. There-
fore, similar to the KdV case and, as argued in Ref. �7�, the
trailing edge of the DSW can be thought of as a modulated
train of gray solitons.

In Fig. 19



�v = 2	
0 − 2 − 2
1 −
�	
0 − 1�E�mv�
�	
0 − 2�K�mv�

�−1

,

mv = �	
0 − 1�−2. �4.55�

When 
0�4, the characterization of the initial data in
Eqs. �4.45� requires that the sign � in Eqs. �4.37� change at
the origin �4.47�. Since the modulated periodic solution
�4.37� and its average �4.40� depend on �, we must deter-
mine how � depends on x and t. It is natural to assume that



�1�x/t� =
1

16
�4	
0 − 6 − r3�x/t��2,

�2�x/t� =
1

16
�4	
0 + 2 − r3�x/t��2,

�3�x/t� =
1

16
�4	
0 − 2 + r3�x/t��2, �4.58�

where r3 satisfies the implicit equation �4.48�. For 1�
0
�4, ��x / t��1. When 
0�4, there is a vacuum point and �
is given in Eq. �4.56�.

Here we find that a key difference between dispersive and
dissipative shock waves is the method of regularization. In
the dispersive case, we use initial data regularization. In par-
ticular we argue that, with the correct choice of initial data,
the hyperbolic Whitham equations have a smooth solution
for all time. Whereas in the dissipative case, jump and/or
entropy conditions are employed. Using a dispersive regular-
ization, we have determined the behavior of a fundamental
DSW in Bose-Einstein condensates. The averaged behavior
of the DSW is similar to the classical shock case but the
speeds and oscillatory behavior are different.

E. Theoretical explanation of experiments

In order to investigate the development of dispersive
shock waves in 2D and 1D, we assume that the condensate is
“prepared” by the 3D evolution, using the results of the two
experiments with the potentials Vit �Eq. �3.1�� and Vot �Eq.
�3.2��. The state of the condensate at a specific time, t= t̃
�described later�, is used as an initial condition for a new set
of equations in one and two dimensions,

2D: �2D�



Comparison of the numerical simulations in different di-
mensions is made by considering the density ���2 and the
appropriate velocity of �. In 3D the radial velocity is defined
to be �arg �3D�r ,0 , t��r. In 2D, the velocity is �arg �2D�r , t��r

whereas in 1D, the velocity is �arg �1D�x , t��x. The 3D and
2D results are found to be barely distinguishable with less
than 1% difference between them in density. The difference
between them cannot be seen in Fig. 23. Also, in Figs. 24
and 27, it is shown that the 3D and 1D results are qualita-
tively the same, hence the analytical studies in 1D in Sec.
IV D are reasonable approximations of the 3D case.

First, we consider the in-trap simulation with the potential
Vit �Eq. �3.1��. We take the state of the condensate at time
t̃=�t �5 ms�, just after the laser has been applied. Now, the
evolution is governed solely by the GP equation with an
expansion potential. Figure 23 is a comparison between the
3D evolution with ��r=0.71� and without ��r=0� the expan-
sion potential. The trailing edge of the DSW propagates to-
wards the center when there is no expansion potential
whereas in the full simulations with the expansion potential,
both the leading and trailing edges of the DSW propagate
radially outward. Otherwise, the two simulations are very
similar.

The evolution in Fig. 23 shows the development of a
DSW on the inner ring of high density and another DSW on
the outer edge of the ring. The density is given on the left
while the radial velocity is plotted on the right. The outer
DSW �see t=2.8 ms� loses its strength and vanishes. The
DSW shock structure investigated in the previous section can
clearly be seen in the radial velocity plot �compare with the
asymptotic solution in Fig. 21�



tions of the Euler equations of gas dynamics and a BEC are
compared. The dissipative regularization of the Euler equa-
tions was calculated using the finite-volume package Claw-
pack �20� for the conservation laws


t + �



DSWs begin to interact giving rise to doubly periodic or
multiphase behavior. Following this, a DSW front propagates
ahead of the interaction region with constant speed �see the
straight lines in Fig. 26�. This behavior agrees qualitatively
with the discussion of BEC DSW interactions in Ref. �38�.
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