
D C. B R
University of Colorado, Boulder

This article raises some questions about the usefulness of meta-analysis as a means of reviewing quantitative research in the social sciences. When a meta-analytic model for SAT coaching is used to predict results from future studies, the amount of prediction error is quite large. Interpretations of meta-analytic regressions and quantifications of program and study characteristics are shown to be equivocal. The match between the assumptions of the meta-analytic model and the data from SAT coaching studies is not good, making statistical inferences problematic. Researcher subjectivity is no less problematic in the context of a meta-analysis than in a narrative review.

Keywords: meta-analysis; literature review; SAT coaching; statistical inference

 $\begin{tabular}{ll} A & \bullet & \bullet : The author thanks David Freedman and Lorrie Shepard for helpful comments on earlier versions of this article.$

o (1986; 1988; B 2004; B 1 2003). (1990; 1990;

when the state of

TABLE 1: Observed and Predicted Effects From New Coaching Studies

			P ed c e	edcedCac FE	Effec F Bec	Bec e (1990)
Re	p S	C ac 🐧 Effec	M de A	M de B	M de C	M de D
Н ее (1984)	SAT-V	57	30	11.6	12.9	24.5
	SAT-M	37	30	25.5	1.2	35.8
Fae (1987)	SAT-V	16	30	11.6	1.9	0.8
	SAT-M	16	30	25.5	13.6	12.1
Ha e (1988)	SAT-M	21	30	25.5	14.5	8.1
W a (1988)	SAT-V	=	30	11.6	2.7	0.5
	SAT-M	16	30	25.5	14.4	11.8
S edec (1989)	SAT-V	0	30	11.6	2.7	0.2

TABLE 2: Average Prediction Error From Becker's (1990) Meta-Analytic Models

TABLE 4: Estimated Coaching Effects in Randomized Studies

Re	a dS d	SAT-M	SAT-V
A de	a a dP e (1980)		
Sc	A		22
Sc	В		9
Sc	C		14
Sc	D		14
Sc	E		1
Sc	F		14
Sc	G		18
Sc	Н		1
Еа	a dP e (1973)		
G	A	12	
G	В	25	
G	C	11	
La c	e e (1985)	8	0
R be	a d O e e (1966)		
Sc	A		17
Sc	В	12	
Z a	(1988)	51	14
Med a	a effec e a e	12	14

TABLE 5:

A , m & & de and and and a man a de and accept

A. G. G. A. G. A.

1984). (g_{hi}^{U}) , (g_{hi}^{C}) , $(g_{h$

One (1961) the look by the total of the order of the orde

. LAs. har reperonent the history to the second of the sec

A'-1... 1/701- (h),

The Market of the order.

Atlon land Anton love, Anton l

$$X_{hij}^{C} z N(\mu_{hi}^{C}, \sigma_{hi}^{2}) and Y_{hij}^{C} z N(\nu_{hi}^{C}, \sigma_{hi}^{2}),$$

$$(4)$$

4601-4 11 1/6 1 text .,

$$X_{hij}^{U} \geq N\left(\mu_{hi}^{U}, \sigma_{hi}^{2}\right) \text{ and } Y_{hij}^{U} \geq N\left(\nu_{hi}^{U}, \sigma_{hi}^{2}\right). \tag{5}$$

1, (A, 1, 1980), 1980, 1

Consider the state of the stat

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

1 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (2003)

2 (200

TABLE 6: Studies by Coaching Mode and Design

	•		Me d caDe	
C ac	<i>ĕ</i>	Ra d ed C	Obea a C	N C
S S	-ba ed	R be adO e e (1966) Ea adP e (1973) Ade aadP e (1980) Sa (1992)	De (1953) Fe c (1955) Dea (1958) Keefa e (1976) K c (1979) J (Sa Fa c c e) (1984) ^a B e (1986) Re d a dObe a (1987) Ha e (1988) W •, C d, a d Ma e (1989) Sc ede (1995) W e (1996)	Pa e (1961) Ma (1965) J (A a a, Ne Y e) (1984) ^a

```
Ka a (2002)
Φ
                                         H ee (1984)
La c e e (1985)
eca-baed
                                          e -ba ed
O
```

O

To the bit of and and the property of the bit is the bit in the bit in the bit is the bit in the bit in the bit in the bit in the bit is the bit in the bi

· Tolly copies to large to the color of the contract of the color of t

0 h h (2000) the second of the

	SES fb.9998-7.9998 1.7004 79484019916	
	Yea ()	
Sa eS e³ (C ac ed/T a)	G ade	

269.

_	·-	·-) -)-•	pə	7						þə			þ				þə				(pə
	I	I	I	I	Σ	Σ	2				_	Σ			Σ		_		Σ		-	۱	0
	1985-1986	1987-1988	1988-1989	1989	1995-1996	1001-1002	100				1965	1970-1971			1977-1978		1983-1994		1988		1985-1986	0001-0001	
	Ž	MD, D.C.	ΡA	MD, NJ	NSA	V					Z F	NJ, OH, PA			7 Ne E •ad	മ 0	S		S		> 2	-	
	e bc(ba)	ae(bba)	b cad ae	ae(bba)	e bcad	а е с	ช ว				bc(a Bac, ba,ada)	bc(ba	d b ba)		bcad ae		e b c (a	Bac, ba)	bc(bba)		, d		
			9	4	Σ	Σ	Ξ				85	12	Ø		ω		Σ	ä	က		Σ	<u> </u>	
			12		11 , 12	11	1				12	11			Ξ		1		12		-	=	
	21/55	200/438	264/535	631/1,132	427/2,086	503/3 11/1	,				188/310	288/417			Y V		23/35		61/122		16/33	000	
	21/55	200/438	264/535	631/1,132	427/2,086	503/3 177	, ,				154/265	ΑN			239/559		23/35		61/122		16/33	000	
Z a (🥞 -SES	a e) (1988)		S edec (1989)	S (1990)	РеаdВс (1999)	(2004)		Rad ed de	Sc -ba ed c ac	R beadOee	(1966)	Ea adPe(1973)		Ade a adP e	(1980)	Sa Faco			Sa (1992)	•	2 d (-5ES d e) (1988)	(0081)	

pe pe W

Е Е

占≥

61/93 9,10,11 1 bc(bba) 13/27 11 1 ae(bba Ca c)

42/71 13/27

C e-ba ed c ac H ee (1984) La c e e (1985)

S d	Gad Mea	SAT-M	O O	D	N	W	A	И	TP	7.5	9	HW	C	WC
ее	-	-	-	3.5	-	-	-	-	0	-	0	0	-	0
Fa e	-	-	-	15	-	-	0	-	-	-	0	0	0	
Ha e	-	-	-	4	0	-	-	-	0	-	0	0	0	
W a	-	-	-	15	_	-	-	-	-	-	0	0	0	
S eglec	-	-	-	15	-	-	-	-	-	-	0	0	0	
W ,C d,adMa	е 1	-	-	15	_	-	-	-	-	-	-	0	0	
	-	-	-	15	_	-	-	-	-	-	0	0	0	
Sa	-	-	-	4	-	-	0	0	0	-	0	0	0	
Sc ede	-	-	-	16	0	-	N	-	-	-	-	0	0	
H e a d Keffe	-	0	-	∞	_	0	-	0	0	0	0	0	-	
W e	-	0	-	89	-	0	0	-	-	-	0	0	0	
P e adRc	-	-	-	15	_	-	-	-	-	-	0	0	0	
уг• γг• Ш	-	-	-	15	_	-	-	-	-	-	0	0	0	
Ka a Yea 1	-	-	0	8	0	-	0	-	-	-	-	-	0	
Ka a Yea 2	-	-	0	30	0	-	0	-	-	-	-	-	0	
NOTE: D=d a fc	ac	(b d a		a e bee	eda		0 0	Bec e' [1990]	о 0	e), VI=	e pa	O	, = =	a a
Δ α α α α α α α α α α α α α α α α α α α	E II	AC OF TP=	D II	AC CA TS	Œ	•־מ ת	_	= VO	DC C	ď	- WC	י		¥

	1			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4	
p s	Yea	P b	Мас	Ra d	ETS	Se	/
0 0	82	0	0	-	0	-	2
Гае	87	0	0	0	0	0	2
Ha e	88	0	0	0	0	-	2
W a	88	-	0	0	0	α	2
S epec	88	-	0	0	0	0	2
W ₹,C d,adMa e	68	0	0	0	0	0	2
S	06	-	0	0	0	0	2
Sa	95	0	0	-	0	-	2
Sc ede	95	0	0	0	0	0	2
H e ad Keffe	92	-	0	-	0	0	2
W e	96	0	-	0	0	0	2
P e adRc	66	-	0	0	-	-	2
or• • • • • • • • • • • • • • • • • • • •	101	-	0	0	0	-	2
Ka a Yea 1	101	-	0	0	0	Ø	2
Ka a Yea 2	101	-	0	0	0	Ŋ	2

5. B begin of the least of the last of the

8.36; (1965).

9.36 (A) (1965).

9.36 (A) (1965).

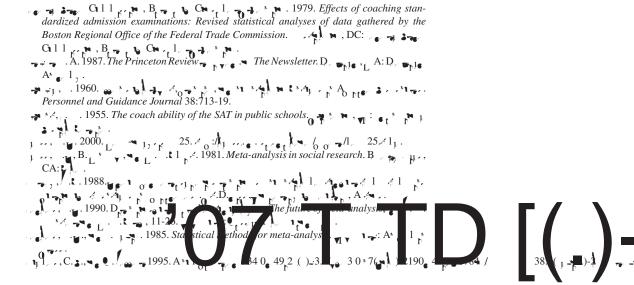
10.4 (1965).

10.4 (1965).

10.4 (1965).

10.4 (1965).

10.4 (1965).


10.4 (1965).

10.4 (1965).

10.4 (1965).

10. (1988), D. (1953), D. (1958), t 1 (1988), A. (1988).

36 (10): 1086-93.

Derek C. Briggs is an assistant professor specializing in quantitative methods and policy analy-