I P P 235 (2002) 247, 265 Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter, Suite 400, Amarillo, TX 79106, USA Chemical Physics Interdisciplinary Program and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA R \ 29 \ O \ 2001; \ \ \ \ \ 20 \ D \ 2001; \ \ 21 \ D \ 2001 ## **Abstract** (SNEDDS) $(C \ Q_{10});$ C_{\cdot} Q_{10} 11 100 . E . S. W (FT-IR) (ATR) 2002 E B.V. A ; S - . ; SNEDDS; T V Keywords: C. Q₁₀; E ; B \ ## 1. Introduction 0378-5173/02/\$ - 2002 E \ S\ B.V. A \ PII: S0378-5173(02)00003-0 (G . \ ., 1992). D ## 2.2. Methods 2.2.1. Differential scanning calorimetry (DSC) of CoQ_{10} -menthol and CoQ_{10} -essential oil binary systems. $C_{\scriptscriptstyle 1}$ Q_{10} , L-90:10 . 10:90 (/). A (DSC 7, P 🔨 **⁴**, CT). T 25 . 60 C 10 C ⋅ -1. S ⋅ ⋅ $C_{\scriptscriptstyle L} \; Q_{10} \;$, 80:20 37 C. 20:80 (/) 4 C 24 C_1 Q_{10} . T_2 ١, 10 DSC . DSC $_{\prime}$ 80:20 60 40 (/), 25 . 55 C. 10 . 40 C. H. 10 C → -1. L. 2, P 🐧 E 2.2.2. Determination of CoQ_{10} melting time C. Q₁₀ 50 . 60% / 1 1 1 **** . M• . (I<u>^</u>. . . R -G, T , C, , C EL20, 40 60% / 1 . 11 , G I ., M• , WI) , . V. , **1** 1 37 C. S. | 2.2.3. Formulation of the self-emulsified systems A | |--| | W , , , , , , , , , , , , , , , , , , , | | 2.2.4. Visual observations T | | J (C, 1995; K, 2001). P | | 2.2.5. Emulsion droplet size analysis and turbidity measurements F. (50) 37 C 37 C, 100 E. T | | 2.2.5.1. Droplet size analysis. T (M LS230, M , FL), 0.04 2000 μ . T | . S. 6 (U(286. (6 .U(286.P)087...)-7(`)-286. .)-286.9. 7) T0 -1.2 0 TD 2.2. P450 (B ..., 1998). A ... C Q₁₀ ... 37 C. $oldsymbol{A}_{ij} = oldsymbol{A}_{ij} oldsymbo$ ١, · · · D C_{1} C_{10} , (K, -., 2001) EL . . C Q₁₀ 1 \mathbf{C}_{1} \mathbf{Q}_{10} , \mathbf{Q}_{10} EL. 37 C . W 60% . T / ... C. Q₁₀, ... 50% / \mathbf{p}_{10} . I \mathbf{v} , \mathbf{v} $C_{\scriptscriptstyle L} \; Q_{10} \qquad \qquad , \qquad , \qquad .$ (C S , 1997). C 3.4. Droplet size analysis and turbidity measurements G. (1998) -355, EL, 2:1. I (C S , 1997; G ., 1998). C .6()-3 .6()4763.1(.,)-..8() T6S | | | D(0.9) | 2.468 | 0.110 | 0.101 | 0.070 | 0.045 | 0.092 | | 0.499 | 0.472 | 0.067 | 0.074 | | | | |--------|------------|---------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|------|-------|--| | | | D(0.75) | 2.619 | 0.117 | 0.100 | 0.084 | 0.081 | 0.100 | | 0.607 | 0.558 | 0.083 | 0.081 | | 0.091 | | | | (n) | D(0.5) | 2.806 | 0.323 | 0.119 | 0.106 | 0.089 | 0.112 | | 0.786 | 0.693 | 0.110 | 0.089 | | 0.099 | | | | <u>п</u>) | D(0.25) | 3.014 | 0.572 | 0.130 | 0.135 | 0.099 | 0.125 | | 1.027 | 0.862 | 0.141 | 0.098 | | 0.107 | | | | | D(0.1) | 3.179 | 0.845 | 0.142 | 0.165 | 0.107 | 0.137 | | 1.287 | 1.031 | 0.170 | 0.107 | | 0.117 | | | | SNEDDS | Š | 0.270 | 0.277 | 0.015 | 0.037 | 0.012 | 0.017 | | 0.308 | 0.213 | 0.048 | 0.026 | | 0.025 | | | | | M. | 2.817 | 0.402 | 0.121 | 0.112 | 0.090 | 0.113 | < 0.040 | 0.845 | 0.725 | 0.121 | 0.089 | | | | | | | C | 6.3 | 12.5 | 18.8 | 25.0 | 31.3 | 37.5 | 43.8 | 6.7 | 13.3 | 20.0 | 26.7 | 33.3 | | | | | (/ %) | Ú | 56.3 | 50.0 | 43.8 | 37.5 | 31.3 | 25.0 | 18.8 | 53.3 | 46.7 | 40.0 | 33.3 | 26.7 | | | | | 11 | L | 18.8 | 18.8 | 18.8 | 18.8 | 18.8 | 18.8 | 18.8 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | | | | DS 111 | SNEDDS | C Q10 | 18.8 | 18.8 | 18.8 | 18.8 | 18.8 | 18.8 | 18.8 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | | | | SNEDDS | <i>*</i> | | | | | | | | | | | | | | | | | ΞШ | Ħ. | | 1 | 2 | 3 | 4 | 5 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | | $0.10158.8(3.179) - 30002.8(0.862) - 3292.4(0.119) - 3101.3(0.084) \\ \ T10 - 5.0240 \\ \ TD \\ \ 7130.1125$ 0.02.995 0 TD20.0 0.06781735 0 TD20.037.5 | T.
E | 3
SN | EDDS | , W , | , | V | , i | | Q10 , , | 15 \ | | |---------|--------------|--------------------|--------------|----------|----------|------------|------|--------------------------|------|------| | F. | , 1 , | SNEDDS | S., W. | (% /) | | SNEDDS | VV | C ₂ Q10 . (15 | | | | | | C _c Q10 | L | C. | C | NTU. | NTU | NTU | P | STD | | 1 | | 18.8 | 18.8 | 56.3 | 6.3 | 605.5 | | | | | | 2 | | 18.8 | 18.8 | 50.0 | 12.5 | 220.0 | 78.2 | 70.7 | 94.0 | 2.18 | | 3 | | 18.8 | 18.8 | 43.8 | 18.8 | 25.1 | 8.9 | 19.5 | 90.3 | 7.87 | | 4 | | 18.8 | 18.8 | 37.5 | 25.0 | 9.0 | 3.2 | 6.0 | 92.8 | 2.52 | | 5 | | 18.8 | 18.8 | 31.3 | 31.3 | 6.9 | 2.5 | 4.8 | 88.8 | 2.52 | | 6 | | 18.8 | 18.8 | 25.0 | 37.5 | 5.3 | 1.9 | 4.1 | 88.0 | 2.84 | | 7 | | 18.8 | 18.8 | 18.8 | 43.8 | 2.4 | 0.8 | 3.1 | 87.4 | 4.42 | | 8 | | 20.0 | 20.0 | 53.3 | 6.7 | 513.0 | | | | | | 9 | | 20.0 | 20.0 | 46.7 | 13.3 | 207.0 | 69.0 | 51.7 | 85.0 | 1.14 | | 10 | | 20.0 | 20.0 | 40.0 | 20.0 | 32.7 | 10.9 | 13.8 | 87.3 | 1.14 | | 11 | | 20.0 | 20.0 | 33.3 | 26.7 | 12.0 | 4.0 | 5.7 | 91.0 | 5.35 | | 12 | | 20.0 | 20.0 | 26.7 | 33.3 | 7.0 | 2.3 | 3.5 | 96.3 | 1.28 | | 13 | | 20.0 | 20.0 | 20.0 | 40.0 | 4.5 | 1.5 | 3.0 | 99.5 | 0.64 | | 14 | | 21.4 | 21.4 | 50.0 | 7.1 | 510.5 | | | | | | 15 | | 21.4 | 21.4 | 42.9 | 14.3 | 90.1 | 28.0 | 52.0 | 89.8 | 3.98 | | 16 | | 21.4 | 21.4 | 35.7 | 21.4 | 20.1 | 6.2 | 10.3 | 94.7 | 0.05 | | 17 | | 21.4 | 21.4 | 28.6 | 28.6 | 10.6 | 3.3 | 4.1 | 94.7 | 1.12 | | 18 | | | 21.4 | 21.4 | 35.7 | 5.9 | 1.8 | 2.7 | | | S. Nazzal et al. / F. . 9. (.) T A . . . V . . 1:1:3 F . 11 1:1:3 **1.1**, (K , 1983). F . 11 .., 1991). Ft . 11 (B. **** . P. . 11 (K ₩ , 1983). H (**G** , , G. ` , 1976). Α ٦, , **** 11 1 NTU . . . NTU 100% i t. G F . 9 , T 1 (E. F . 12 . M. S 42.6%. T N HLB N B . (1997) HLB. H ., 1994). A 🐧 ****, \, \, \, \, (H)1996). T , , **** ## 4. Conclusion G Q10 E . \ N_{c} , S., G, N., R, I.K., K, M.A., 2002. P D . D . I . P . . 2.1(56) TJ. 1. 1. N. N. - K , M., 1983. P.V , LV , W , V LV , C , , M , V , S , , , , V , V , O , M , V , W , , , , , 322. - K W, M.V., L V , O.D., 1983. M V C. E* T F .85, 511 526 E V V : S . P . JETP, 58, 299. - N. , S., . , A.A., R , I.K., K , M.A., 2001. A , V , (C Q10) , V , 56 (5), 394 396.